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SOMMARIO

La tesi in oggetto tratta I'implementazione di usteama di localizzazione per robot
mobili in ambienti dinamici. Per svolgere tale cotap l'unica informazione
utilizzata proviene dall’odometria e da una sengplicleocamera unidirezionale. La
posizione stimata e relativa ad una mappa topddoigimita dall’'utente. L'approccio
qui descritto e basato fortemente su un nuovo igigordi confronto immagini per
riconoscimento di luoghi, il quale e assolutamentiipendente dalla presenza di
particolari riferimenti, siano essi naturali odifectali. Facendo uso dello stesso
algoritmo, si creano immagini panoramiche dalleiponi prescelte. Tali immagini,
insieme ad alcune informazioni metriche relativdoao punti origine, formano la
mappa utilizzata dal robot per localizzarsi. L’agwita nell'informazione utilizzata
per riconoscere luoghi differenti viene gestitaushasistema di ipotesi multiple con
una procedura di selezione basato sulla localisnazdi Markov. In questo modo si
riesce a far fronte a casi di “perceptual aliasingdi totale assenza di informazione
affidabile dai sensori. Il sistema di localizzazaon questione e stato implementato
su un robot reale. Esperimenti condotti in un dtassufficio dimostrano la
robustezza dell’approccio anche in casi di ambigim&mici.
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ABSTRACT

This thesis is concerned with the implementatioa édcalization system for mobile
robots moving in dynamic environments. To acconmpligs task, the only computed
information comes from odometry and from a simpieduectional camera. The
estimated position is a topological location on apnprovided by the user. The
approach here described is strongly based on aimege matching algorithm for
place recognition, which is absolutely independenin the presence of particular
landmarks, either natural or artificial. Panoramages of the topological places are
reconstructed making use of the same algorithmsdlmages, together with some
metrical information relative to their origins, forthe map that the robot utilizes to
localize itself. The ambiguity of the informatiosad for recognizing different places
is resolved with a multiple-hypotheses tracking amatrocedure of selection inspired
by Markov Localization. In this way, the system adal with cases of perceptual
aliasing or total absence of reliable sensor infdrom. The localization system has
been implemented on a real robot. Experiments ezhrdut in a typical office
scenario demonstrate the robustness of our appreaeh in case of dynamic
environments.
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1 INTRODUCTION

In robot navigation a fundamental role is playedhmsylocalization system, since it is
necessary for every kind of path planning. Thisststs in providing the robot with

the capability to identify its current position the environment with respect to a
certain point of reference. Before introducing lingalization system described in the
following chapters, we would like to present a tacxmy normally adopted by the
research community to classify the numerous exjsapproaches and introduce
some of the recent works in this field.

1.1 The localization task

In [Fox98] three main parameters are taken intooaet for evaluating the
localization performances:

1) how the robot’s position is represented insidegheironment with respect to a
particular fixed reference;

2) the kind of environment that the robot has to aati;

3) the way the robot interacts with the environmeninprove the capability of
localizing itself.

The first point above refers to the distinctionvibetnlocal andglobal localization.

In the local approach, the robot is normally sugplo® localize itself with respect to
an initial, known position. This kind of problemisa called “position tracking”, is
often solved using techniques based on Kalmarrifije which gives remarkable
results in case of sufficient information from teensors [GBFK98]. On the other
hand, a global localization is able to recovernbigot’s location without knowledge
of the initial position. This feature is not impamt only at the beginning but also
during the localization process, because it metswsracovering the correct position
when the estimation of the previous one came obetoompletely wrong, therefore
dealing with the so-called “kidnapped robot” prohle

The second point takes into account an importampgnty of the explored
environment: it may bestatic or dynamic In a static environment most of the
features, or at least those directly observabléhbyrobot, do not change over time.
This facilitates the task of the localization systbecause it implies the perceived
changes to be only dependent on the robot’s pasitiaturally this assumption is
often false, since typical situations the robot ttadeal with are presence of people,



different disposition of the furniture, doors open closed, etc.; shortly, the
localization must be reliable also in dynamic earments.

The third point mentioned above is related to tkieresion of goassivelocalization
system, which does not influence the robot’s mgtioranactivelocalization, where
this means having also a direct control on thegaion. The reason is to improve
the localization process moving towards places whire robot can perceive
additional data and eventually resolve situatidrsnobiguity.

The way explained so far to classify the differapproaches highlights in particular
the performances of the localization system. Ahirtextension, which takes into
account also the several methodology adopted tolveeshis task, is very well
described in [FMO03]. Here the localization stragsgiare divided in three main
groups and for each group there is a further dison in other three categories, for
an overall classification of nine localization tgpelhe strategies are identified as
follows:

1) direct position inference this is the capability of the robot to estimiggecurrent
position relying only on the current observations avithout taking into account
the past history. Being totally independent fromy gwevious position, this
method permits a global localization but fails cdetgly in case operceptual
aliasing (i.e. when two or more observed location lookghme).

2) single-hypothesis tracking this strategy keeps always track of the previous
estimated position using also the relative disptaaet given by the internal
readings (i.e. odometry information). Even if this general helps to resolve
situations of perceptual aliasing, the localizatoould fails in case the previous
position is completely wrong. The methods basedKatman filter can be
inserted in this category.

3) multiple-hypothesis tracking such solution directly derives from the previous
strategy. Here, instead of keeping track only c# position, the robot considers
the possibility to have moved from several locagi@md then takes into account
all of them to get an estimation of the current.dmepractice the localization
system always keeps track and updates in paradlet af hypothetical positions,
identifying time by time the most probable.

As we said, for each of the strategies above tisea@ addition sub-division. This is
strictly related to the kind of map used for thedlkization and how the robot’s
position is represented within the map. We can tHestinguish three different
combinations “map type” / “position type”:

a) metrical map / metrical positior the map represents the environment using
Cartesian coordinates to describe the shapes ofntlidved objects and the
spatial relations among them. The map is normalljaa of the environment in
form of CAD drawing. The robot's position is alsepresented with two
coordinates (eventually plus its heading directiorthe same Cartesian frame.

b) topological map / metrical position in this case the map contains only a finite
number of locations, eventually connected by littkat represent the possible
transition paths between two different places. Tbopological map can be



thought as a graph, where each location is a neeleek) connected by links
(edges). All the nodes contain information aboetghrrounding environment, so
as it can be perceived standing on that point, {flas relative coordinates with
respect to a common frame of reference. These twies are used by the
localization system for inferring a more precisennal position.

c) topological map / topological position this last representation makes use again
of a topological map but, differently from the casgbove, consider also the
robot’'s position laying on its nodes. This combiomtis useful when the
application does not require an exact positiondms of centimeters. The
attention instead is directed just on recognizing tarea” where the robot is
currently moving. Although this topological map da®t necessarily contain the
coordinates of its nodes, in some case this métimtarmation might come
useful for computations involving odometry.

A fourth combination, metrical map / topological positignis normally not
considered, since the loss of precision in loctibraresulting from the conversion to
a topological representation is not compensated for

1.2 Overview of localization systems

In the last years there has been a growing numibezab robot applications where
the localization was an essential part of the retiog system. Some of the most
famous examples are the tour-guide robots RHINOBIH and MINERVA
[BCF99], or the robot-waiter ALFRED [MMA99]. Theysad different approaches
and different sensors for localizing themselves[TIRB99] perceptions were based
just on proximity sensors (sonar and laser), wimliBCF99] they mad use of laser
plus an additional camera directed towards thangeilso the observed scene was
mostly static). The robot of [MMA99], instead, usadificial landmarks to recognize
places of interest.

Other several localization approaches making usé@sidn have been presented in
recent years. In [GMOO] the robot was equipped wvéth unidirectional camera
pointing ahead to the floor; the localization wasrfprmed thanks to the basic
hypothesis that the floor had an uniform textureafter camera calibration, it was
possible reconstructing from the images a local.ni&e localization was the result
of the comparison between the current local mapagmek-recorded global map.

The solution of [XYOHO03] was based instead on auradtlandmark model and a
robust tracking algorithm. The landmark model cowd sets of three or more
natural lines such as baselines, door edges aedrledges in tables or chairs. The
localization depended on an algorithm that allovikd robot to determine its
absolute position with a view of a single landmigrkbne image.

Other recent approaches made use of Monte Carlalizaton. It has been
demonstrated that this technique is reliable aridthea same time, keeps the
processing time low. Indeed, Monte Carlo localimathas been successfully applied
in the RoboCup four-legged league, where the Samysdhardware has critical
limitations. For example in [EFRO1] they implemahte Monte Carlo approach for



vision-based localization that made use of spordeatures, extracted from the
images of the robot’s unidirectional camera. Thebpbility of being in a certain
location was calculated against an internal motitde environment within the robot
moves. The experiments proved that the method eleble enough, even with a
restricted number of image samples, and improvadtidally increasing the number
of features. Some tests in a typical office envinent seemed also promising.
Another application of Monte Carlo Localization e RoboCup context is
described in [Pre03; MPPO4]. In this case the vidgmt came from an omni-
directional sensor and the images were processesl way to simulate a laser
scanner, using the distances from points with golieiensity transitions. Even here
the localization system made use of an internakessmtation of the football field.

An omni-directional camera was also the sensor methe topological localization
in [UNOO]. Here they present an appearance-basaszk plecognition that used only
panoramic vision, without any odometry informati@olour images were classified
in real-time based on nearest-neighbour learnimgge histogram matching and a
simple voting scheme.

Independently from the sensors used to perceivewitidd, innumerable systems
have been also presented to resolve the ambidatyarises from such perceptions.
No sensor reading indeed is immune from noise aratse both coming from the
sensor itself and from the surrounding environméntvide range of localization
systems have been tested and compared in the wbifkBFK98; GF02; KJO03],
covering methods based on Extended Kalmn FilterHEKVarkov Localization
(ML) alone or combined with the first one (ML-EKHYlonte Carlo Localization
(MCL) and Multi Hypotheses Localization (MHL). Thiesults of such experiments
are a good starting point for choosing the mostabie localization approach,
depending on our own application. They are alsofulis®r getting precious
suggestions and ideas on how developing new methods

1.3 Current application

Now that we have a general view of the localizatpyoblem, we can go further
introducing the particular application for whichraystem has been developed. The
main objective was implementing a map-based loatdin system for indoor
environments. It had to be eventually integratedairmore complex navigation
architecture where the robot is able to perforrkddgpical of a waiter or tour-guide
scenario. This idea arose from some similar subdegxperiences [MMA99;
BCF99; TBB99]. The localization module had to disrefore with the presence of
people and general changes of the environment. fHs& was particularly
challenging because our robot, an ActivMedia Pddgieis provided just with a
normal color camera and sonar sensors. Unfortynasaice the beginning these
latter came out to be very unreliable in our enwinent because of many kinds of
surface that could not be correctly detected. Feuntlore, an accurate map of the
environment was not available and occasionally stum@ture, which would have
influenced the sonar readings, had to be moved.chb&e then was developing an
image-based localization system with the only adidétl information provided by
the robot’s odometry.



In our application, it was not necessary to knovaotly the metrical position.
Instead, a topological localization was the mogtrapriate solution for a robot-
waiter or tour-guide scenario. We implemented trensystem that, given a
topological representation of the environment, esiimate the area where the robot
is currently moving. Our method is strongly based @ new place recognition
algorithm that does not need any specific landméhle same algorithm is also used
for reconstructing panoramic images from the plateinterest, combining a
sequence of snapshots taken with the normal carBeich images, together with
approximate coordinates of the topological locajoform the map used by the
robot. The place recognition process is followedilprocedure that resolves cases of
perceptual aliasing or absence of reliable semgormation. The system keeps track
of a hypotheses’ set and for each update step ekabe most probable, with an
approach inspired by Markov Localization. From th@eriments, carried out in a
typical office scenario, this method seems to béeqobust even in case of dynamic
environments.

1.4 Structure of the thesis

The following chapters are organized as follows.

2 PLACE RECOGNITION

The algorithm for image-based place recognitiorexplained in detail. Then we
describe how the same procedure is applied to stamt panoramic images.
Successively we derive a method to recover theihgatirection of the robot from
such images. The chapter terminates with the uskgahl zoom for enhancing the
place recognition performances.

3 MULTI-HYPOTHESES TRAKING

This part starts with a brief introduction to Mavkbocalization theory. Then it is
followed by the assumptions imposed in our impletagon and the description of
the update rules for the tracked hypotheses. We tilg to give an intuitive
explanation to the method adopted. At the end taeresome consideration about the
odometry correction and finally the overall localibn algorithm is illustrated.

4 SOFTWARE IMPLEMENTATION

This chapter describes the practical implementatibtihe localization system. First
of all we describe the software library that comsaithe algorithms previously
illustrated. Then we explain how the system hasnbe¢egrated in the robot’s
behavioural framework.

5 EXPERIMENTS AND RESULTS

Here we present several experiments conductedypieal office environment and
relative results. The first group of tests are esned with the performances of the
place recognition algorithm. The second is relatedthe overall system, with
experiments including several types of environmard with analyses of the cases
where the localization fails.



6 CONCLUSIONS

In this last part there is a critical evaluationtbé implemented localization and
recommendations for future works.



2 PLACE RECOGNITION

In this chapter we describe a new method to reeegaiplace among a finite set of
possible places. This set is basicallppological mapof the environment, provided
by the user. Each place is identified by a pointha Cartesian space and by a
panoramic image of the scene observed from suaft.pbhe procedure is mainly
based on the comparison between a new image, fek@nthe camera, and all the
panoramic images of the map. For each comparisgalug is assigned, which is a
measure of the match’s quality. The comparisororgedusing a hewnage-matching
algorithm, that for simplicity we will callMA. The entire procedure of comparison
on the whole set of panoramic images constitutepldte recognition

2.1 Image matching algorithm

In an indoor environment, the most relevant charggesdue to objects or people
moving with respect to a horizontal plane. A pers@tking, a chair moving, a door
opening or closing: all these examples can be thiows “columns” moving
horizontally along an image of the original scelbe algorithm described in this
section arises from this simple consideration.

The main idea is to divide the new image into saveolumn regions that we will
call “slots’ and then compare each of them with a stored inzdidlee original scene.
The measure of the similarity between a slot ofriees image and a region of the
stored image is given by the Normalized Correlatmefficient, simply calledNCC
(see appendix A)

The image-matching algorithm, &MA, can be divided into two steps. In the first
one, every slot of the new image is shifted andcheat inside the stored image. The
matching values calculated are then used, duriegséitond step, to determine the
position where the match is maximum. The procedsirbetter describédin the
following paragraphs.

! For simplicity, error cases, like image over-bowmdarray overflow, are not considered here. They
will be discussed and treated on chapter 4.



2.1.1 First step: slots matching

Let us consider the new imagew Single channel, of widthVhe, This is divided
into Ns slots; each of them has widWio: = Whew / Ns. We refer to one of them as
slot,, withn =1, ..., Ns. Then consider a reference imdge also single channel, of
width Wet = Whew The imagesnew andles have the same height. We also refer to a
region oflr, delimitated by the pixel columrtgs andCright, aSlref [Ciett , Cright). The
columnscier andciign: belong to this region. In Figure 2.1an examplkhiswn.

Wn ew Wref
A — A —

7

slot; | slot | slotz | sloty

{
{|

Wiot I ref[CIeft ) Cright]

Figure 2.1 Examples of oy (divided into four slots) andl e

First of all, we need to clarify how ti¢CC matching function works (see appendix
A for a mathematical description). Given a soumoadel.s and a template image
slot,, it compareslot, with a regionlefc, ¢ + Wgot — 1]. The comparison is repeated
for each columm = 1, ..., Wies After each comparison, a vafusetween 0 and 1.0 is
stored inside an arrayAL of lengthWi.s (see Figure 2.2). So, if the width of the slots
is Wgiot = 10 andVAL[5] = 0.7, it means the similarity between the currentpiate
slot, andl {5, 15] measures 0.7.

slot,
—

-

VAL[1], VAL2], VAL3], ...
Figure 2.2 Slot ofl hay shifted alongl & and compared withNCC

2 The originalNCC, actually, calculates a value betweehand+1, but in our implementation it is
modified so that its output varies between 0 arasldescribed in appendix A.



The first part oiMA works as follow. At the beginning, two arraj}dATCH_SLOT
and MATCH_VALare created and initialized. The length of both déinrays iSMer.
The NCC function is used to calculate the matching valués. the end,
MATCH_SLOTwill contain the indicesn of the slots that match best, while
MATCH_VALwiIll contain the relative matching values. Thatifsslot; is that one
which matches best on the regidp{5, 15], then MATCH_SLOT5] = 3 and
MATCH_VALS5] contains the relative matching value. The pdure is described in
Code 2.1.

Code 2.1 First part of MA (slots matching)
MATCH_SLOTW = {0, ..., G
MATCH_VALW.] ={0, ..., ¢

for n=1to N
VAL = NCC(les, slot)
for ¢ = 1t0 Wt
if VAL[c] > MATCH_VAI[c] then
MATCH_SLOTc] =n
MATCH_VAIc] = VAL[(]
end if
end for
end for

END

2.1.2 Second step: best matching

As previously said, in the second stedMA, the position and the value of the best
match are extracted. Basically, this consistsndifig the best sequence of slots with
the highest matching value. The procedure comparmeask{1, 2, ...,Ng along the
whole arrayMATCH_SLOT The mask is a sequence of slot indices, at distaf;
each other, as shown on Figure 2.3. The compaiisotione “positioning” the
beginning of the mask on each elemenM&TCH_SLOT Every comparison starts
resetting a variabl8UM If an elemennh of the mask and the relative element of
MATCH_SLOTare equal, then tH& value ofMATCH_VALis added tSUM At the
end of each compariso8UM contains the total matching value, given by tléssin
the right order and position.
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Figure 2.3 Comparison scheme of the best matchirxtraction

Below, Code 2.2 describes the procedure. The dasdbAX and COL are used,
respectively, to keep track of the maximum matchang relative position. At the

end of the procedur®]AX s also normalized.

Code 2.2 Second part ofMA (best matching)

MAX =0
CcoL=1

for ¢ = 1 t0 Wies

SUM =0

forn=1to Ns
i=c+ (n—1) Wt
if MATCH_SLOTi] = nthen

SUM = SUM + MATCH_ VA|L]

end if

end for

if SUM > MAX
MAX = SUM
COL=c



11

end if

end for
MAX = MAX / N

END

2.2 Panoramic image

For every place in the environment, a panoramiagemean be reconstructed using
theIMA algorithm. If @is the view-angle of the camera ahdwith A < g, is the step
angle between two consecutive images, then a fahopmic view can be
reconstructed combining the72 A images. Between two consecutive images there is
an overlapd - A wide, as shown in Figure 2.4. In the whole segtfon simplicity,

the positive orientation for all the angles is &wise.

Figure 2.4 Sequence of images for panoramic vievegonstruction

Using the same notation, we chl the panoramic image, which is the reference for
the future new images. The widli.s, of course, depends on the view-angle of the
camera, so that:

W =w._ £ (2.1)

ref new
e

The panoramic imagées could be obtained inserting, at the exact positiie
sequence of imagdse taken at angular intervals 9, 24, 34, .... However, in a
real application, it is difficult to take images tlvisuch precision. If the chosen
interval, for example, is 309A(= 77/ 6), the images should be taken exactly at 0, 30°,
60°, 90°, ..., 330°. This would be a tedious and terpensive work. Instead, the
angular interval is just an approximationAfwith a succession like 0, 27°, 65°, 99°,
..., 323°. In order to correctly align this “impregeissequence of images, a modified
version oflMA is used.
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NOTE - For simplicity, the procedure here explaineduasss that the right part of
an image always matches perfectly with the left pathe next. This is obviously
not true. In section 5.1.2 there are experimentsvsiy robustness and limitations of
the panoramic image reconstruction.

2.2.1 Variant of IMA for panoramic image reconstruction

The panoramic image is initially just a black imagke value returned HYCCfor a
black image is exactly 0>5With a simple modification to the second partMA, as
highlighted in Code 2.3, this situation can be hamdand used for the correct
insertion of a new image in the panoramic view. i@k, whenever a slot is
compared with a black zone, the matching valuegassi is the mean of the previous
comparison$ This permits the positioning of two sequentiahiges like in Figure
2.4.

Code 2.3 Second part ofMA modified for panoramic image reconstruction
MAX =0
CoL=1

for ¢ = 1 to Wiet

SUM =0
for n=1to N
i=c+(n—1) Wyor

if MATCH_SLOT]j] = nthen

SUM = SUM + MATCH_VAL][i]
else ifMATCH_VAL[i] = 0.5

SUM = SUM + SUM / (n 4)

end if
end for
if SUM > MAX
MAX = SUM
COL=c
end if
end for
MAX = MAX / N

% Actually, NCCreturns 0.5 every time one (or both) of the coragamages has just one colour. This
happens because the mean intensity is the sarad fhe pixels. See Appendix A for details.
“ Of course, this is valid only if the images arediried in the exact order, from left to right.
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END

The reconstruction process is done as follows.tlAdl images are compared with
IMA and inserted, one by one, with respect to thetiposCOL returned by the
algorithm. This is the position where the matchimgnaximum. At the beginning,
since the panoramic image is completely black filse normal image is inserted on
the very left. The following images are then inedrinoving gradually to the right,
until filling the whole panoramic image. Every ingamserted overlaps the previous
one approximately by an angle - A, as in Figure 2.4.

A consideration about this variant A described in Code 2.3. Though the new
added condition can be easily inserted just for ghecedure of panoramic image
reconstruction, it has been noticed that it dogsniluence the result dMA even if
kept during the place recognition stage. When usednormal environment, indeed,
the probability to have exactly a matching-valu® & is practically insignificant.

2.2.2 CLAHE filtering

During the panoramic image reconstruction, an ingarfactor for the final result is

the quality of the taken images. Sometimes, theeenat enough distinguishable
features in the image. This is often due to théiqdar observed scene, like a wall or
a big cupboard, or to the light conditions (see éaample Figure 2.5) In these
situations, the procedure of panoramic image rdoact®on may fail because not

able to correctly align two sequential images. deo to resolve or at least reduce
such problem, the images are filtered usingQbatrast Limited Adaptive Histogram

Equalization(CLAHE).

?ﬁ.‘ ,- e gy
Figure 2.5 Original image Figure 2.6 Image filtered with
CLAHE

A normal histogram equalization does generally meprthe information visibility,
but it applies the same equalization function ®whole imageCLAHE breaks the
image into “tiles” and determines the best functioruse for each tile. The result is
an image that shows artificial boundaries betwakss tand so an interpolation
scheme is used to smooth the pixel intensities datwiles. The effect d€LAHE
filtering can be observed in Figure 2.6.
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2.3 Heading angle extraction

An important feature ofMA applied to panoramic images is the capacity toaekt

the position where the new image matches bettas. @dsition is given by the value
COL, which is the left pixel column of the region bg where the best match is. If
the angle 0 is set 0BOL = 1, then the angler of the camera’s direction is simply
given by the following expression (like in secti@, the positive orientation is
clockwise):

g =2t (2.2)

ref

Therefore, if all the panoramic images have beeanstructed with a common angle
of reference,a can be used to estimate the robot's heading. Qirseo this
measurement of the heading angle depends on trectraess of the image matching.
It could be also completely senseless in case ¢laeimage was associated with the
wrong panoramic image. Therefore, particular catestnibe taken in using it. The
angle a can be considered reliable when the matching,hencbrrect panoramic
image, is high. In this case, its precision is naliyngood enough for correcting the
odometry’s heading angle, as experimentally dennatest in section 5.2.7.

2.4 Enhancement with digital zoom

The place recognition method, explained so farfessifof the problem of being

really sensitive to the distance from the origipaint, where the panoramic image
has been constructed. This means that, movingothat some tens of centimeter far
from that point, the output dMA decreases quickly.

To resolve this problem and enhance the place ngiboig, a digital zoom processing
is added in a way to enlarge the area detection.

2.4.1 Geometric description of digital zoom

The principle of digital zooming can be explainesing the well known “pin-hole
camera” model. Differently from the mechanical zopmovided on some devices
(where the focus lengthis varied to increase or reduce the scene’s diiberms the
image plane), with digital zoom the focus lengtHix@d. The scene’s dimension,
conceptually, is modified directly on the image r@a Therefore, given some
definitions, it is easy to find out some geometelations.

Let us consider an object of heidtht placed on the positiax. Its relative height on
the image plane iy, with a fixed focus length = fo. Saidp the zoom factor, the
robot can be “virtually” moved from a positiog to x(©) modifying such factor, as
shown in Figure 2.7.
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Figure 2.7 Pin-hole camera model of digital zoom

Observing the figure above, the following relati@as be extracted:

h__H (2.3)
fo Xa=X%
pthy . H (2.4)
fo Xa = X(P) .

From the expression above, we can easily calcthatévirtual” shift Ax(p) from the
original positionxo:

BX(P) = [X(P) = X =[%s = %) E‘l—%‘ =D #1—%‘ (25)

whereD is the absolute distance of the object from theeara.

2.4.2 Application to place recognition

The equation (2.5) is based on a very simplistideholn the real world, of course,
an observed scene is a combination of several-thnreensional objects at different
distances from the camera. Nevertheless, it castibb@sed to intuitively understand
what explained below.

Given a panoramic image of a place at posiBg(xo, Yo) and moving the robot along
a rectilinear liney = yp, on an intervabjp — Ax, Xo + AX], IMA returns values that can
be approximated by a gaussian function, like inuFeg2.8 (see section 5.1.5 for
experimental results).
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IMA output

Xo—AX Xo Xo+AX
Position

Figure 2.8 IMA output

To expand the width wheil®A output is higher, the input image from the camera
can be digitally zoomed and compared again withstbeed panoramic image. More
precisely, after a normal comparison, the imageosmed in and compared again,
then zoomed out and compared once more. The addifithese two comparisons
results, theoretically, in the addition of two n@aussian waves to the graph of
Figure 2.8. Let us consider a plageequidistant from all the surrounding objects. If
we choose a zoom factar, > 1, the centre of the relative gaussiap can be
calculated using equation (2.5):

XZin :X0+Ax(pin):X0+D[El_ij (26)

in

To have then another gaussian, symmetrical withe@stox,, a new zoom factor
Oout < 1 must be usédTo calculate it, we can start from the followiexpression:

1
Xzout = %o _Ax(pin) =X +D [El_p_j (27)

After simple steps, the formula for the new zoowgtdais like follows:

p.
=_fin 2.8
Ioout 2p _1 ( )

in

® This is presented here just for completion togeemetric description. In reality, a digital zoomtt o
cannot be used, because the data outside the incagelaries is missing. The problem is then solved
comparing the image with a zoomed in panoramic anag described in chapter 4.
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The combination of the thredA output is then like shown in Figure 2.9. More
precisely, the output considered for place recagmits the maximum of the three
gaussians, as highlighted by the thickest line.

Considering the robot moves on the Cartesian pl#me,place recognition with
digital zoom could be then represented by a thmeeasional “Mexican hat, still
considering only the directions passingRy Again, this is the case for a supposed
place where all the surrounding objects are equaidis Some considerations on the
effect of the zoom for more realistic environmests given in the next section.

IMA output

|
Xo—AX Xzout  Xo XZin Xo+AX
Position

Figure 2.9 IMA output with digital zoom

2.4.3 Some considerations

As previously said, the explanation of digital zqaapplied to place recognition, is
based on the assumption that all the objects, drdbe considered place, are
equidistant from its centre. This results in a sygtroal “Mexican hat” output of
IMA. However, in real environment this is not trueerses (and objects within them)
always have different distances from the point they observed. Therefore, the real
shape of place recognition output is consideralfferént from Figure 2.9. We can
take, for example, an indoor environment like ampgmoom. Since the virtual shift
Ax, given by equation (2.5) for a fixed zoom facprchanges linearly with the
distanceD, we can intuitively presume the place recognitatput follows the shape
of the room. This is shown for two different plagesFigure 2.10. The crosses are
the place centres (where the panoramic imagesaken)} and the dashed lines
identify the maximum mach for the zoomed image.
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.........

Figure 2.10 Place recognition with digital zoom

The observations above suggest some care muskée ita choosing the places to
recognize and the zoom factor, depending on theslsion of the environment. In
particular, if they are to close each other orazbem is too high, the risk of overlaps
among them augments and thus the probabilifyen€eptual aliasingtwo different
places look the same). Moreover, since the zooradoaescognition works properly
only on those directions including the area refeeepoint, it is preferable to use a
low zoom factor. In this way, the area is smallat the probability to be correctly
aligned is higher.

A final consideration on another aspect of digg@am might be also noteworthy to
explore in future works. So far, the zoom has bessumed fixed and used uniquely
to increase the recognized areas. Instead, oneeeanhas been identified, the zoom
factor could be varied in a way to maximize thecplaecognition output. With such
a factor, it would be then possible to calculate distance from the area reference
point. Finally, in combination with the heading &ng¢section 2.3), it would give a
more precise position inside the current area.
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3 MULTI-HYPOTHESES TRACKING

The main problem in using image-based place retiognfor localization arises
when two or more places are very similar and diffi¢o distinguish. This case,
referred aperceptual aliasingis not typical of vision systems only, of courkat of
every kind of sensor providing information abou ferceived world (sonar, laser,
etc.). This happens frequently in indoor environtadike offices, where rooms and
furniture are often similar and may cause the reitmy of different places difficult,
even for a human exploring for the first time seclvironment.

The procedure described on the previous chaptegdbanIMA, is normally able to
distinguish different places because it considesgyaificant amount of information
coming from the vision input. Nevertheless, cadegeoceptual aliasing often occur
because of occlusions or relevant changes of theescwith respect to those ones
originally stored. For example, if a person in trohthe camera is covering part of a
scene, important to distinguish it from another,dhen uncertainty comes out and it
might not be possible to correctly identify theatele place.

To handle this kind of uncertainty, we adopt aroatgm inspired by the Markov
Localization [Fox98]. It starts from a series ofpbyheses generated by the place-
recognition procedure and chooses the most likelgoming to the previous
hypotheses and the robot’s movement.

3.1 Overview of Markov Localization

The Markov Localization is a direct application sffate estimation within the
framework of “Partially Observable Decision Mark&vocesses”ROMDP). Two
assumptions must be valid for the considered enmient where the robot moves:
1) independence of the actions

2) independence of the observations.

For the first one, the knowledge of the state anith@ action at timé-1 is sufficient
for the prediction of the state at timelf s is the state of the robot at tirkgwith
relative observationy, anday is an action performed starting at titkkérom s, the
same concept can be written as follows:

P(S S0 +080 Ve Vias B5e8i) = P(§ |80 804) 3.1
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Basically,s ands.; are respectively the current and previous posstiointhe robot
anda.; is the movement between them as recorded by theeidy.

For the second one, instead, an observaii@t timek depends only on the relative
states;, so that we can write the next expression:

POV 800008 Ve Vi, Be080) = P(V [ §) 3.2)

Here, the observatiown is simply the data extracted from the world byoaat’s

sensor at statg.

Below we adopt some notation commonly used for snethod. In particular, we
call beliefof 5, or Bel(s), the probabilityP(s; | vi,...,, &,...,a&-1) of the states that

we have to estimate. Applying Bayes’ rule, it isspible to write the following
equation:

Bel(s) = PV [S:Vyse Vi @ees@g) P(S I Vs e Vg & ee084) (3.3)
PV, [V Vg, 8y 5ees@yy)

We can now take the terms in the right part of &8d examine each of them
separately. From the assumption (3.2) of indepetelef the observations, the first
term of the numerator can be rewritten as follows:

POV 85V ei8) = PV |8) (3.4)

SupposingSis the entire space of possible states and apptii@ “Total Probability
Theorem” to the second term of the nominator iB)(3ve have the next equation:

P(S Vo Moy @y Ba) = D P(S 180 Ve My B )P(S 2 [V M B - B (B.5)

8405

At the first term of the sum in (3.5) we can apfilg independence of the actions,
expressed by equation (3.1). Moreover, the secermd bf the same sum can be
substituted remembering the definition bélief ”. Equation (3.5) can be then
rewritten in a simpler form:

P(S [Vyse Vi, @,eni@) = D P(S 180,84) Bel(sy) (3.6)

§40S

Finally, the denominator of (3.3) can be seen likst a normalization factor of the
belief Indeed, applying the “Total Probability Theorent’can be substituted with
the following expression:

PV, [V Nt B Ba) = D POV 1S Vi Mg, B ) P(S Ve Mg, B B0) (B7)

s0S

® To make the reading easier, the notation is neays formally correct.
"Indeed the state,, is independent from the actiapn,, because the latter is executed just after such

state. ThenP(S_; |Vy,ee Vo 80y s@ps8y) = P(S [ V4 Vi, 80008, ,) = Bel(s).
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= Z[P(vt 1) D P(s 1S, at_l)Bel(st_l)} (3.8)

s0S 5,408

A new version for calculatingel(s) can now be written substituting (3.4), (3.6) and
(3.8) in (3.3):

P(v,|s) D P(s |s4.a.)Bel(s ;)

Bel(s) = Sl (3.9)
Z[P(vt 1s) 2. P(s Is_l,a[_l)Bel(s_l)}
sUS 5.0S

In particular, we can note that the denominatoregquation (3.9) is just a
normalization factor. From the new expressioBels) it is now easy to implement
an algorithm to update the statdsélief This is called “Markov localization
algorithm” and can be divided in three steps.

1) Predictionwhen a new action is executed:

P'(s)= D P(s |s4.a.)Bels,) (3.10)

§-400S
2) Updatewhen a new observation is available:
P'(s)=P(v |8)P'(s) (3.11)

3) Normalizationwhen all theP"(s) have been calculated:

__P'(s)
Bel(s)==—— 3.12

s0S

To apply the “Markov localization algorithm”, théoge, only two main elements
must be known. The first one is the teR{s.| s-1, a-1) of the prediction step, in
equation (3.10). It is normally callemction modeland provides the probability of
being in the position (state), given that the robot executed the actapn starting
from s-;. The second element is necessary for update step and is the term
P(v | s) of (3.11). It is the probability that an obsergaty; is done when the robot is
in s. From here the nanmsensor modellt must be also noted that at the beginning
(t = 0), thebeliefis equally distributed on all the possible stasessthe robot does not
know its initial position.
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3.2 Assumptions and notation

Let us indicate the stdtef the robot, at time by a triplet <, y;, ¢ >, wherex, and

y; are the Cartesian coordinates of the robot’s os#nd ¢ . is its heading angle.
The couple X%, y;) belongs to a finite set of two-dimensional poinigich is the
topological map where the robot is supposed tabalized. The heading angfe,,
instead, has continuous values inside the intg@yatn). The entire seb of possible
states, therefore, contains an infinite number lefments. To make the problem
computationally treatable, we impose here somenagons. We assume that the
probability distribution, at time, of being in a certain position %, yi, ¢ ¢+ > is
completely contained in a sub-&t1 S. The elements df are all the positions for
which IMA (chapter 2), at time, returns a matching-value higher than a certain
threshold, plus an additional “virtual” positionvgn by the odometry (this is
explained in 3.2.1). That is, the real positiontled robot is always supposed to be
one of those recognized by the place recognitncalculated using the odometry
information. Of course, the number of possibleestato generated is limited by the
nodes of the topological map; therefdéels a numerable set.

In the next sections, we will refer to the &twith the letterD and we will call
destinationan elementD. We will also refer to the s&-; with the letterO and
call origin an elemenbllO. It is clear that a sdD of destinations at timé will
become the seD of origins at timet + 1. Moreover, to distinguish our “local”
probability distribution from that one used in thlarkov Localization, we substitute
the wordbelief with activity, as in [FM02]. ThusBel(s) andBel(s;+1) becomeAct(d)
andAct(0) respectively (activity of the destination andiatt of the origin).

3.2.1 Virtual destination hypothesis

The assumption of considering only the destinatiginen by the last observation,
that is thdMA output, would be too restrictive. To be sure thatright position is in
effect one of those recognized, the threshold adpio thelMA output should be
very high. This would limit excessively the poshipito consider good hypotheses
just because some changes in the environment, tamypor permanent, have
reduced their distinctiveness. On the other harithh alower threshold, the number
of possible destinations increases, together vghprrobability to choose the wrong
one. Even worse if none of the current hypothesesarect.

To handle this kind of ambiguity, sometimes theykenase of a “Zero Hypothesis”,
that is a way to handle the case when all the dilgpotheses are wrong. In [JKO01],
for example, the authors have a finite set of hiypsis generated by new
observations and updated simultaneously using Kalnfiiering. The zero
hypothesis is used to close the probability spackis kept updated considering the
uncertainty of the observations. When the probigbdi such hypothesis is higher
than the others, the robot is in a state of indeacis

8 Sometimes, we will use indifferently the wordsatst’ and “position”.
° This is justified by the fact that, most of thedis, the correct position is in effect one of tlestb
recognized witHMA.
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In our approach we found useful inserting a “viftubestination, that is the position
on the topological map closest to that one givethieyodometry. More precisely, the
latter is calculated from the last winning destimatadding the relative displacement
given by the odometry and corrected as explaine8lin The heading angle of this
new hypothesis is also given by the odometry. Trent“virtual” is because we
assign to it a matching-value, like all the othesstthations generated by an
observation, and then we treat it at the same Whg. assigned matching-value, in
particular, is equal to the threshold used to gaeeahe other hypotheses. In practice,
it would be like IMA has recognized an additional place, with the mimm
matching-value. On the next update process, suctuél-destination” becomes the
“virtual-origin”.

3.3 Action model

We saw in section 3.1 that a first fundamental conemt of the “Markov
localization algorithm” is thection model Using the notation introduced in 3.2 and
simply callinga the actiora;4, we can rewrite such model as follows:

P(s |s4.a.) =P(d]o,a) (3.13)

This model expresses the probability that a desbinal is reaching performing the
action a from the origino. This probability is estimated taking into accothé
location and the heading angle of the robot. Th®@aa is simply the displacement
given by the odometry. For our scope, no sophisiccanodels are used for handling
the cumulative errors typical of the odometry. ihformation, indeed, is always
relative to the previous estimated state and cporess to a short path. Therefore, it
is considered reliable enough for being directhedisn the action model as
explained below.

Let us sayQ, the two-dimensional position of the originwith a heading anglé..
Then Q, is the position reached fro, after the execution o and Qq is the
position of the destination. The first parameter used for the estimation i th
distanceAl betweerQy andQa:

Al =[Q, -Q, (3.14)

Now let us consider the heading anglg after the action and that one of the
destination,gy. The second parameter we use is the differéebetweengy and

¢a10:
AP =|g, 4] (3.15)

1 Note that for the case “virtual-origin:”virtual-destination”, introduced in 3.2.1, the d&g, and
@, are the same, g = 0.
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A graphical representation of all the quantitieéraduced so far, is shown in Figure
3.1. The dark-grey circle, on the left, represéinésrobot’s origim. The white one is
the position given by the odometry after the exiecuof the actiora. Finally, the
light-grey circle is the current destinatidnPlease note th&, andQy are two pre-
defined positions within the topological map, whilg could be any point in the
environment.

Figure 3.1 Parameters for theaction model

The quantityAl is then use to estimate the probability of thetideBon’s position
with the following formula:

Al?

g, (4l =ﬁ @ e (3.16)

max

Almax is the maximumhl among all the current combinations origin-destoratThe
function gi(Al) is a gaussian, centred in zero and with standndation Al
Therefore, its width varies at every update, depenon the currenfMl . In the
same way, the quantifx¢ is use to estimate the probability of the desiomés
heading. The formula applied is again a gaussiatree in zero and with standard
deviationA@nax Which is the maximum¢@ among all the current ones:

Ap?

1 - 2
g¢ (A¢) = mm¢ (e 20nax (3-17)

Finally, the action modelis then calculated combining (3.16) and (3.17) itite
following expression:

P(d]o,a) =g, (Al)[g,(Ag) (3.18)
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A2 Ap?

[ Diw [ 2005 (3.19)

_ 1
27 AP

max

3.4 Sensor model

In many localization systems, the environment issed through low-dimensional
devices, like sonar or laser range finders, forclwhaccurate models are already
available [BFHS96; MO88]. Other approaches instaad vision to calculate the
robot’s position with respect to some particulaatiges. In [MPP04], for example,
an omni-directional image is processed using anaging method, simulating a laser
range sensor that returns distances of chromaiisition features. Even in this case,
an accurate model is provided, with parametersaetdd by a modified EM
algorithm [DPLR77] applied to a set of 2000 sampieages. There are also
approaches where the sensor models are learnt isimgl networks, both in case of
data from vision or sonar [Th98; Th99; OHD97].

The data given by the image-based procedure fameplacognition, i.e. théMA’s
matching-value, differs from all the above-mentidm@aplementations. There are no
measures of distances or extraction of particidatures. What we have, instead, is
the result of a comparison between a pre-recordadramic image and a new image
from the camera. A similar situation is describadkMO02], where they compare
images from an omni-directional camera with image=viously stored. In that case,
the difference between the two images, new andremerded, was passed to a
gaussian function, obtaining a value between Olaptbportional to this difference.
In [DNO1] the sensor model is directly derived byeit image-based place
recognition, where the match of image histograntwiges also the probability of
obtaining a certain sensor reading from a placethgsis. ThéMA works in a more
sophisticated way, but the concept is almost tmeesa hesensor modelin some
way, is implicitly “included” in the pre-recordecaporamic image. An ideal image
would return 1 when it matches perfectly on the gpamic image and would
decrease to 0 as more as the match is bad. Ofe;ahes perfect match, for which
IMA would return 1, cannot happen. First of all beeaokthe panoramic image,
which is far away to be a “real” 360° scéheSecond, because the environment
cannot be completely static. So, for example, irofiite many particulars change
day by day and the recorded images become lesssexyative. However, these kind
of problems are generally common to all the panaramages and the decrease of
their quality can be considered the same for althein. Therefore, this does not
influence very much the performances of the loedilin system. Back to tH&A’s
match, we should also note that a little noise gbvaxist (with the exception
reported in®), since in practice two images are never completifferent. This
problem is tackled by the fact that the observatioie are dealing with are higher
than an appropriate threshold.

1 This could be improved using an omni-directiorialon sensor, as discussed in 6.2.
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From what we said above, the probability of theepbation given the current state
can be considered directly the matching-valuéM. Using the notation introduced
before and referring to the observatgsimply asv, we can write theensor model
as follows:

P(v, |s) = P(v|d) (3.20)

Therefore, remembering from Code 2.2 that the niagetalue is contained by the
variable MATCH, we can refer to it with MATCH(d), relatively to a particular
destinatiord. For the update of the activities then, we usenthd probability:

P(v|d) = MATCH(d) (3.21)

3.5 Update of the activities

As previously said, we cadlctivity the correspondent of the Markov Localization’s
belief The update of the activities is done with the sdormulas, but taking into
account the assumptions in 3.2. In particular, esitftte possible destinations are
generated as far as a new observation is availtidethree phasegrediction —
update - normalization are always executed at the same time'$t@hen, given a
set of destinationdID and originsoJO, the procedure for the calculus of the new
activities is reported below:

1) Prediction

P'(d) =) P(d|o,a) Act(o) (3.22)
2) Update
P"(d) =P(v|d)P'(d) (3.23)
3) Normalization
Act(d) = P'(d) (3.24)

2. P'(d)

dob

In the formulas above we apply the expressionsudsad in the previous sections. In
particular, the probability?(d | o, a) of (3.18, 3.19) is used in th@ediction (3.22)
and theIMA matching-value ofl , also calledMATCH(Jd), substitutesP(v | d) in
(3.23).

2 In the original “Markov localization algorithm”, evremember that therediction could be done
whenever an action was executed, while updateandnormalizationwhenever a new observation
was available.
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3.6 An intuitive explanation of the update process

So far, the way the activities are updated has Ipeesented in a context similar to
that one used for the Markov Localization. As alyeaaid in the introduction of this
chapter, the method explained is just inspired ey Markov model, but it is clear
that some of the assumptions adopted does not ffitstrict mathematical terms.
Nevertheless, in most of the real applications, r@itbe Markov Localization has
been used, there are violations and/or adaptatibttsee formal model (for example,
the independence of the observations). The samkavianodel and its assumptions
are just approximations of the real world.

We try here to give an intuitive explanation of tbhpdate process, out of the
mathematical context and just helped by some gcapleéxamples. We examine
separately the four main terms involved in theediction — update process of
equations (3.22) and (3.23). These are the actnfityhe origin Act(o), the two
parameterdl and A¢ for calculating theaction modelP(d | o, a) and finally the
sensor modeP(v | d). In the next figures, we have the origins on legfe and the
destinations on the right. The short line inside tircles indicate the heading of the
robot. The arrows represents the last action erdchy the robot and the dashed
circle is the position after such action, as gisgrthe odometry. For simplicity, we
suppose the odometry without errors.

3.6.1 Activity of the origin

Suppose two new destinations are generaleahdd,, both with the same matching-
value™. The possible origins are also twm,ando,. The activities of theseAct(o,)
and Act(o,), are different. In particular, the activity @k is higher thano,, as
represented by the lighter gray in Figure 3.2. €hmae just four possible transitions:
01 — dl, 01 — dz, (0, d]_ andoz - dz.

-Q— (3 O
- @— (> O
Figure 3.2 Selection based on the origins’ activjt

Because of the symmetry of the problem, the firdlvaies of the destinations
depend only on the activities of the origins. SiAcg0,) > Act(0y), it is clear that the
most likely destination id.

3 This would be a case perceptual aliasing
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3.6.2 Distance from the destination

In this case, we have one origla and two destinationsl; and d,, again with
identical matching-values. In Figure 3.3 we can #gee graphical representation.
What make us choos® as the most likely destination is the fact tha thstance,
with respect to the odometry’s position, is shorBrch distance, in effect, 4.

(@)
Py
P
/
|
N

O

Figure 3.3 Selection based on the distanés

In the action model(3.18), this distance is “weighted” and normaliZedm the
gaussiarg(Al) (3.16), so that a short distance has an influenaeh bigger than a
long one. In case of multiple origins, for eachtohedion all the possible distances
are taken into account.

3.6.3 Heading angle difference

A consideration similar to the previous case candbee for the heading angle
difference, which we called\@. It is calculated comparing the heading of the
considered destination and the supposed one giyeithéd odometry after the

execution of an action.

Figure 3.4 Selection based on the heading angldfdrenceA¢

The origin is still one, distances and matchingseal are the same for both the
destinations. However, in Figure 3.4 we can seaéstinatiord, having an heading
angle different from that one in the odometry posit The destinatiod,, instead, is
oriented in accordance with it. Thereforg, is the most likely choice. As in the
previous case, we should note again fhtis passed through a gaussian,gh(&¢)
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in (3.17), and that, for multiple origins, all tHeeading angle differences are
considered for each destination.

3.6.4 Current observation

The last situation we examine is when the onlygtirat makes the difference in the
destination choice is the current observation.

Figure 3.5 Selection based on the current observah

In the figure above, we see again two destinatibos this time with two different
matching-value. In particulaMATCHd;) > MATCHd,). Being the same all the
other parameters, the most probable destinatidn is

3.7 Correction of the odometry information

An important role in the selection of the currerdstihation is played by the
odometry. Indeed, theredictionstep of (3.22) makes use of thetion mode(3.18,
3.19) and this one strongly depends on the odon@tymation.

We can examine first of all the distandé (3.14) used in (3.16), supposing the
heading angle is correct with respect to the albsolkero direction of the
environment. Such measure is simply the Euclideatance calculated from the
coordinates of the considered destination consijestored into the map, and the
coordinates of the robot, as given by the odomeltryis well known that the
odometry is not reliable on long paths, due to whekppage, irregularities of the
floor, collisions and so on. Nevertheless, wherdugeshort ranges, it is information
is quite precise. We then use such informationtjusteasure relative displacements,
resetting the odometl{/every time an update of the topological positi@s lbeen
done. Of course, despite the fact that the degtimag not always correct, this reset
can introduce an error, since a topological pasiioonot a geometric point in a two-
dimensional plane, but a sort of “area” or “regioHbwever, the fact that the area’s
radius is reasonably smaller than the distance d@tviwo consecutive destinations
reduces the effect of this error. On the other,dilde vantage is significant, since it
fixes a limit to the cumulative error of the deagdkoning.

14 Actually it is not really reset, but the softwgsengram uses the difference between the current
odometry and that one recorded during the lasttepda
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Let us now consider the heading angle. It has dléomportance: first of all, it is
explicitly used in the calculus of the parameter (3.15), which is the main variable
of the gaussian (3.17). The latter is part of #otion model Furthermore, the
heading angle is also the rotation of the intefreahe of reference of the robot, with
respect to an absolute 0 direction of the enviramméence, an error on such angle
means a rotation of the topological map used from rbbot, and from this map
depends also the calculus of the param@tt@bove. In many applications, instead of
using the heading angle calculated by the wheet®dars, an external magnetic
compass is mounted on the robot, like in [DNO1; @M This has the advantage of
being independent from the cumulative errors of ddemetry, since it gives an
absolute direction of the North. Using such diractas reference, the robot is then
able to correct its internal heading. On the othand, this device is not immune
from errors, mainly because of metallic objectprioximity of the robot. In [FMO02],
for example, they observe as a magnetic compassduwut to be inefficient in their
office environment. For our approach, we choseeastanother solution. Since for
every new environment we want to move on a new amapa new set of panoramic
images are needed, we reconstruct these latteryahstarting from the same
direction. As already described in 2.3, this pesntiite robot to recover its absolute
heading using the formula (2.2). To limit the cag®swhich the wrong panoramic
image is used, that is when the localization fails,correct the odometry’s heading
angle only when the matching-value of the estimatestination is higher than a
given threshold. It has been noted, indeed, thatlgnatches usually mean correct
estimations. This is due to the fact thsliA can distinguish different places with a
certain accuracy and without incurring in errorspefceptual aliasing, at least in a
typical office environment like ours. In 5.2.7 thediability of this heading correction
is demonstrated even in extreme conditions.

3.8 Overall algorithm

At this point, it is possible to write the wholeatithm for generating the destination
hypotheses, calculating the relative activities selécting the most likely one.

The case when no destination hypotheses are gedasatreated in the first part of
the localization algorithm. After the comparison af new image with all the

panoramic images in the topological map, it maypeapindeed that no new
destinations are considered because all the matefailues calculated are below the
decided threshold. The only way to update the felgisition is then relying on the

odometry and calculating the displacement relativethe last recognized place.
Since the required output is just a topologicalipms we find out the place in the

map supposed to be closest. Note that this kingebhviour is like trying to guess
the current location being “blind” and, in suchccamstance in fact, the only
information is provided by the internal odometrynd® the closest topological

location has been calculated, the localization ritlym ends and waits for a new
observation, which is hopefully good enough to gatgeone or more hypotheses.

When some of the comparisons among the panoranagemare greater then the
threshold, the set of destinations is not emptytaedalgorithm can proceed with the
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procedure for selecting the most likely one. Fafsall, for each combination origin-
destination, the distancesl and the angles\¢ explained in section 3.3 are
calculated, keeping track of the maximum valddg.x and A@ max All these
quantities are then used in the following step,clwhis the calculus of the activities
for all the new destination. Thgredictionand theupdateformulas in 3.5 are applied
to each destination, always keeping track of tha¢ with the highest activity.
When theprediction - update loop is completed, the activities are normalized
among all the considered destinations. After thia¢, odometry’s coordinates are
reset to the most active destination. For the ctioe of the heading angle, there is a
further check on the matching-value of such destinaif this is higher than a
certain threshold, it means the observation wasl goal the orientation of the robot
can be adjusted according to the angle giverlNi. Finally, the current set of
destinations becomes the set of origins for thet eeecution of the localization
algorithm.

In order to reduce the computational expense, thelevalgorithm is executed only
after the robot has moved of a certain distandeasrrotated of a minimum angle. As
in every program that makes use of video processmged, we have to deal with
time constraints and with the fact that other psses require to be executed.
However, this also has the advantage of effectivginerating new different

destinations (i.e. different states) and reducecéises of failures.

A scheme for the localization algorithm is reporiedCode 3.1. Some new symbols
are introduced:

* & is the threshold used for extracting the deswmati with the best
matching-values

* & is the matching-value threshold for correcting ddemetry’s heading and
IS £ 2 &u

« d is the destination with the higher activity andresponds to the relative
state x,y, ¢ >

« 0 is the most likely origin, i.e. the lagt extracted

The quantitiessy and&s are determined experimentally and the values tadogre
illustrated in 5.2.

Code 3.1 Localization algorithm

Calculate the location given by plus the odometry displacement and find the
topological positiordy[ID closer to such location

Compare withIMA the new image with all the panoramic images in rtreg and
extract the possible destinatiottisD with a matching-valuMATCH(d) > &y

15 We sayactivity even if, at this stage, it is not normalized yéowever, the normalization part has
not influence on the choice of the best destination
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if no new destinations are generated WNiiA
Return the topological positialy
END

end if

for eachdID
for eacholO
CalculateAl andAg (3.14, 3.15)
Keep track ofAlmax aNdA@max
end for
end for

for eachdID

CalculateP(d | o, @) with (3.19)

Update the activity (3.22, 3.23)

Keep track of the destinatiah with the higher activity
end for

Normalize the activities (3.24)
Reset the odometry’s coordinates

if MATCH) > &,
Set the odometry’s heading to the angle
end if

The destinations become the next orig@s,- D
Returnd’

END
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4 SOFTWARE IMPLEMENTATION

The practical implementation of the localizationdule is a tedious work and, in
terms of time expense, certainly comparable testhdy of the theoretical approach.
There are three main criteria followed for the waite development:

» performances in terms of speed and memory space
* reusability and platform independence
* easy update and extension.

These led to the choice of creating a C++ libramy lfinux operating systems, that
includes all the procedures described in chaptan@ 3. The implementation as
library permits its use in different contexts, lgpipractically independent from the
software architecture of the robot. In theory,hibsld be possible using such library
on every robot provided with Linux OS, odometryoimhation and a normal camera.
In the following sections it will be explained teeucture of the library and the main
functionalities it provides, together with an irdrection to an additional library for

video processing. Its integration in the robot’sidkéware is then illustrated.

4.1 A general purpose library for localization

The library is a complete software framework fol thle localization procedures

described in the previous chapters. The code istenriusing Object-Oriented

philosophy. In particular, one main object includies map representation, with all
its panoramic images and relative coordinates,pandides the necessary functions
to insert the data and retrieve an estimate positiote that such implementation is,
in itself, a passive localization approach, in #ense that it does not interfere
absolutely with the robot movement. On the otherdhat can still be integrated in a
more sophisticated system of active localization.

4.1.1 The TopoMap object

The main object of the library is implemented wikie classTopoMap The name
derives from the fact that it keeps an internatespntation of the topological map.
This means that all the panoramic images and tbedowtes of the positions we
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chose to map inside the environment are interrsatiyed. Other information held by
the TopoMap object is the current odometry and the video inmantinuously
updated by the robot during the localization. Hinahere are several methods to
interact with the map, update the estimated posiéind retrieve all the necessary
information.

When theTopoMapobject is created, some important parameters brispecified.
The most significant are the following:

« scale the scaling factor applied to reduce the resofutof all the processed
images;

 slots the number of slots for the matching algoritHmMA&);
» zoom the factorg, for the digital zoom;

* match_thresholdthe minimum matching-valuey, for the generation of new
destination hypotheses;

* head_thresholdthe minimum matching-valugs for the correction of the heading
angle.

4.1.2 Panoramic image reconstruction

One of the first methods provided by the cldsgpoMapis a static function that
reconstructs a panoramic image from a sequenceapshots, as explained in 2.2.
This method, calledgetPanorama accepts as input parameters the path of the
directory where the sequence of images has beerdext, the number of slots to use
for the reconstruction, the activation GLAHE filtering and other less significant
settings. The returned value is a pointer to tlenstructed panoramic image. It is
worth specifying that, during the creation of tremprama, the procedure of insertion
of the snapshots can be visually debugged, soth®atuser can understand the
reasons of eventual failures and then modifyingitipeit parameters to resolve the
problem. We will see in 4.2.3 how the functigatPanoramahas been used for a
semi-automatic procedure that permits to get a @zemic image quickly.

4.1.3 Insertion of the topological map

Once all the panoramic images of the topologicalations are available, it is
necessary to provide timpoMapobject with the map. The task is accomplished by
the methodgsetMap This needs, as only parameter, a referencedxtdile providing

the path of the directory where the panoramic irsaaye stored, the names assigned
to each topological position and their relative rdmates. Such file has a very
simple syntax and we can see in Figure 4.1 an ebeaafpmap file, in this case for
our laboratory. Observing its text, it is simply toderstand the three main
information: the first line is the directory of tiage files, the left column contains
the names assigned to the topological nodes andethaining columns are the
relative coordinates andy.
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/ hone/ bel ush/ i mages/ panor am ¢
CHARGER 0 0
DESK_1 1000 0
DESK_2 1000 1000
DESK_3 0 1000
SHELVES 0 -1000
CENTRE 1000 -1000
CUPBQARD 2000 -1000
DOOR 2000 0

Figure 4.1 Example of map file

4.1.4 Input data functions

Before every update step, we must provide the ourrgormation given by the
internal odometry sensors and by the camera. Feofir$t one, the dedicated method
is setCurrentOdometrywhich requires as input parameters the coordénasndy
plus the heading angle given by the odometry. Tiegee retrieved by the camera, as
buffer of bytes, is the input for treetCurrentimagenethod.

4.1.5 Update function

The core function of the whole softwareupdateActivities for which it is worth
spending some more words. Such method implementgactice the localization
algorithm illustrated in Code 3.1.

First of all, using the new information introducedith the previous
setCurrentOdometry the updateActivities function estimates approximately the
current metrical position. This is done as followsing the odometry’s position
previously recorded (when a destination was cha@seang all the generated ones)
and the current metrical position, it calculates ¥iector connecting these couple of
two-dimensional points. The direction of the vedtoeventually corrected according
to the last supposed heading angle error. The atgiof the current metrical position
is then calculated “adding” such vector to the l@stning destination or, as we use
to call, the most probable origm. Comparing the coordinates of this new position
with those ones provided by the map, it finds bt ¢losest topological node. Such
node has a double importance: in case no destirsatice generated in the following
part, it is the “supposed” place; if some destoratis generated, it is the additional
“virtual” one, which we caltl.

The following part of thaipdateActivitiesunction is dedicated to the processing of
the video input, previously provided lsgtCurrentimagelf the digital zoom is not
used g, = 1), this simply means to applyA between the current image given by
the camera and all the panoramas of the topologiodes. All those having a
matching-value higher than the threshgldare possible destinations to consider in
the next part. If the zoom is activey(> 1), things are a little more complicated. In
practice, for every topological nod®IA is applied three times, one for each of the
following combinations: “current image’“panorama”, “current image zoom
in” - “panorama” and “current image’™ panorama zoom in”. The first two cases
are quite obvious (see 2.4.2). The third one insigdhe practical implementation of
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the zoom out for the current image. It is impossilbhdeed, performing a (digital)
zoom out of the image given by the camera withoosing all the contour pixels.
Therefore, the solution adopted is reversing tleegaure and comparing the original
current image with a zoom in version of the pan@akinally, for each node only
the best of the three matching-values is consitllere

Once all the comparisons wittMA are completed, the nodes for which the
matching-value is higher than the threshajgl are considered as new possible
destinations, together with the virtudal The choice of the most probable depends on
their activities, updated as explained in 3.5:dkstination with the highest activity,
which we calledd’, is the winning one. Instead, if no match is higtough, the
function simply returnsly, which is only a supposed position in this case.

At the end olupdateActivitiesafter generation and choice of the new destinatioe
current odometry is recorded and will be used éibure updates. This has in practice
the same effect of resetting the odometry, as wenofaid, but without truly
interfering with the real measurement. A similartinoel is applied to the heading
direction, corrected by the vision with the angtplained in 2.3. Every time there is
a winning destination’, if the relative matching-value is higher theythe program
calculates the difference between the odometryaslimg angle and that one of such
destination, extracted with the formula (2.2). Tthierence is then used as offset in
the successive calls apdateActivitiego correct the odometry’s heading angle. The
function finally terminates returning the estimatkbtinatiord .

4.1.6 Video processing with OpenCV

It is clear that a fundamental role in the locdlma software is played by the video
processing. For this application we chose to @tiin open-source library that was a
former project of Intéll, freely downloadable from Internet. Basically,stlgsionsists
of a collection of C functions that implement sopwpular algorithms for Image
Processing and Computer Vision. It does not relgxternal numerical libraries and
is platform-independent, that is Linux and Windaesnpatible.

Most of the functions we made use from this librarg for image transformation, in
particular conversion from RGB to grey scale ansizes of the dimensions. The
camera indeed provides a colour RGB image withsalugion 384288 pixel, while
we need to work on grey images scaled three or mmes, in a way to keep the
processing time acceptably low. Furthermore, OpenZdvides a set of useful
functions to load and save image files in seveoainfts, plus the opportunity to
create simple graphic user interfaces (GUI) to sliogvimages and interact with
them. This revealed to be particularly useful febdgging, for example during the
panoramic image reconstruction.

The most important function we made use in our vk is probably
cvMatchTemplatefundamental part dMA. In practice this returns the Normalized
Correlation CoefficienNCC for an input image and a template. In our algaritihe
input image is the panorama and the template list @sthe camera’s snapshot (both
converted to grey scale).
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4.2 Integration with the robot middleware

The access to the different devices available orokile robot is normally provided
by an intermediary software placed between the lwel part, i.e. the Operating
System’s drivers, and the high level programs, whdce the modules forming the
“intelligent” behaviour of the robot. This middleMel software is called, indeed,
middleware Though our platform, an ActivMedia PeopleBot (s@pendix B), was
already provided with a basic middleware, we chosmake use of a more powerful
framework calledMiro. This is richer of useful features and makes ety
integration of the localization with other modulds.this section we introduce the
main characteristics dfliro and how the localization system is implementeddas
it. We also describe the initial realization of antomatic module for panoramic
image reconstruction.

4.2.1 The Miro framework

Miro is a distributed object oriented framework for nt@obot control, based on
CORBA (Common Object Request Broker Architectuszhnology and developed
at the ULM University, Germany. Thdiro core components have been developed
in C++ for Linux, but due to the programming langaandependency of CORBA
further components can be written in any languagean any platform that provides
CORBA implementations. Moreover, thanks to thishtesogy, it is possible
developing distributed applications. This meansdpportunity to execute programs
on different computers for controlling the robotsetul for example when its
computing power is not adequate to perform markstasreal time.

One of the most interesting features\iro is the integration of the behavioural
control paradigm by its own behaviour engine. lagtice this permits to implement
any kind of software that requires access to thHotte peripherals and that is
structured as behavioural architecture, where déattaviour can interact with the
other ones. This organization facilitates the subdin of a complex program in
small tasks and consents the reuse of each belawiodifferent architectures.
Moreover, Miro provides a script-based method to create any afobehavioural
architecture; the scripts can be easily creatednaodified with a nice graphic user
interface.

The structure of a behaviour module is also vemp#e. It is derived from a standard
class provided by theMiro’ source code. The only methods that need to be
reimplemented arenit, called by the behaviour engine the first time thedule is
activated, anaction, which is executed periodically by the same endimgractice,
the first function contains all the initial setteignecessary to the behaviour, like
assigning particular values to some variables setteng the odometry. The second
function instead implements the real behaviour@ndains the code to be executed.
Several behaviours can be then grouped to foricdan pattern which is a special
structure accomplishing a more complex task. Indide action pattern, each
behaviour has a given priority (i.e. the priority an “avoid-obstacle” behaviour
would be higher than a hypothetical “wander” bebavj. Sometimes, aarbiter
module must be also assigned to an action paftrexample to handle the cases of
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concurrent access from different behaviours toiddr devices (i.e. wheels’
motors). Finally, an action pattern can interaghvather action patterns through the
use oftransition, which can be thought as a sort of signals. Ao$etction patterns
with relative transitions forms the so-callpdlicy, which is in practice the final
architecture performing the intelligent task of thebot. The reader may also
consider a policy like a state machine, where ttiom patterns are states with
transitions among them.

4.2.2 Localization as behaviour

The localization system has been implemented aagviomlr within the context of the
Miro framework. The objective was to make it availabte module for complex
navigation tasks in future applications. Having tloealization system already
integrated inMiro, indeed, permits an easy interaction with othérab@®urs and the
execution of high-level plans that require the entrmposition of the robot. Practical
applications for which such implementation would bseful are, for example,
scenarios where the robot acts as waiter or toigretfi The idea would be inserting
the localization behaviour as independent threadthat it keeps to be updated
during the motion. At the same time it could pravithe estimation of the current
topological position on any other behaviour’s resjue

The localization module, which we calldéacalize behaviour, makes use of the
TopoMapobject previously described in 4.1.1. This objsctreated within thénit
function of the behaviour class and initiated wiitle necessary parameters. During
this first stage we also load the topological msge(4.1.3). The input data, coming
from odometry and camera, are then continuouslyiged to theTopoMapobject
from the other behaviour's methaakgtiony after this data insertion, the activities of
the nodes insid€opoMapare updated and the most probable position esttnahe
latter can be eventually used by other behaviau@ctomplish tasks dependent on
the current robot’s location.

4.2.3 A behaviour for creating panoramic images

The procedure of panoramic image reconstruction diss been implemented as
behaviour forMiro and calledvideoScanThe first advantage of such module is the
opportunity to take automatically a sequence ofpshats rotating on a fixed
position; this sequence is then used to reconsthgctelative panorama. The whole
procedure is quite fast and normally completecess lthan two minutes. The second
advantage is that théideoScanbehaviour can be integrated in more sophisticated
systems of “active localization”, in a sense off-sg@ldate of the recorded video
information, or “map-learning”, where the robot absers and maps unexplored
locations.

The behaviour is very simple: the robot perfornfsilarotation taking snapshots of
the surrounding environment and then, callinggb#®anoramdunction introduced

16 Some initial tests on this direction have beeniedrout but they are still in a very early stage.
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in 4.1.2, creates the relative panoramic images Tihiage then can be used by the
Localizebehaviour.
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5 EXPERIMENTS AND RESULTS

In this chapter are illustrated the results of salvexperiments conducted in the
Centre for Hybrid Intelligent Systems of the Unsigy of Sunderland. In particular,
most of the data has been collected in the NeutmRIoaboratory. This consists in a
room of approximately 6n¥, with furniture typical of an office (see Figure23).
Along two sides of the room there are ample windoafien cause of light
conditions particularly challenging. Sometimes wadm use also of an adjacent
corridor, about 10nt wide, connected to the laboratory through a smalty. A
rough map of the environment can be seen in 0.

The first experiments presented here are relabuvihe performances of our image-
based place recognition. We cover most of the sojpeated in chapter 2. The second
part of experiments are relative to the whole lizegion system, therefore including
the method described in chapter 3.

5.1 Place recognition performances

The performances of the place recognition are @asily important, since the whole
localization strongly depends on it. Even in thethod we chose to generate new
hypotheses and tracking them, as explained inv&2nade the assumption that the
place system works fine, at least in most of theesaSince such system depends on
IMA and on the panoramic images, we start with somecagion of the algorithm to

a static image (that maybe also helps to betteenstand how it works). Once some
examples of panoramic images have been presentetestiMA on these and we
compare the output among different places, thuse® how distinctive it is. We
conclude this first part of experiments with theati@g-angle extraction, very
important for the success of the localization, aitti some interesting data about the
digital-zoom implementation.

For most the following experiments, we use greyesamage with a resolution of
72x58 pixel. The number of chosen slots @A is 8.

5.1.1 Moving obstacles

It has already been explained in 2.1 how the matchrocedure works, dividing the
new image in columns, that we callgldts and then comparing each of them with a
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pre-recorded image. In this experiment we wanhtmasthe output ofMA in typical
situations of dynamic environments. In order toidvbe noise introduced by the
irregularities of a panoramic image, these testkemsse of a single pre-recorded
image. Further experiments taking into account ghaoramic image’s noise are
shown later in this chapter.

As first try, we want to plot the output d¥1A in the most classical situation, i.e.
when a person is moving in front of the camera.Figure 5.1 there are some
snapshots taken with a person walking from one ®d#he other of the observed
scene. The resulting output IBMA is plotted in Figure 5.2. As expected, such output
is close to 1 when no people are in front of thex@a and decrease of about 25%
when a person is crossing the scene. This decreapeyticular, is proportional to
the size of the region occluded by the personeitms of “columns”, he could be
considered as a column that shifts left and rigbtupying a quarter of the scene.

time-steps

Figure 5.2 IMA output for a person walking

In the next example, there is a different situatiomt with similar results. The case
examined is the opening and crossing of a dooillstrated on the sequence of
Figure 5.3. Again, the decrease of IMA output is close to 25%, as reported in
Figure 5.4, and the same considerations of thaque\example are applicable.
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Figure 5.4 IMA output for door opening

5.1.2 Examples of panoramic image reconstruction

The reconstruction of panoramic images has a fuedéh role in our
implementation. Unfortunately, without having anrordirectional vision sensor, is
not easy to obtain such images from a normal carméefirst thing we have to deal
with is the limit angle of view of this device. most of the cases, this angle is
approximately 40°, which means the minimum numkeinm@ages to reconstruct a
full panoramic view is 9. Of course, even suppo#el angle of view is known
exactly, many other factors make the reconstructiery difficult. In particular, it
would be practically impossible to take snapshoiih wuch a precision that two
sequential images fit perfectly. In most of theesamdeed the camera is fixed to the
frame of the robot; even if it was provided witkk@trollable pan system (and this is
our case), normally this does not allow a full tioia. The only way to take images
of the surrounding environment is thus making thiot rotate with its own wheels.
This means imprecision of the angle step betweensdquential snapshots.
Imprecision that arises as much as we increasspbed at which we want to take
the images.

It is clear then that the best solution is havinguanber of snapshots a little higher
than the minimum, in a way that between two of thitvere is a small over-lap.
Taking advantage from the latter one, it is evdhtyaossible to align correctly a
sequence of images, two by two, until fill up trenprama. This is the method we
used for the examples shown here.
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The procedure of image-taking has been made coefplatitomatic implementing
an appropriate behaviour in th®liro framework (see 4.2.3). The program
implemented permits us to take a sequence of imagesne or two minutes,
depending on the interval chosen between two cotisecsnapshots. As said above,
the robot simply turns around, slowing down eantetihe predefined angle step has
been reached and then getting the image from theerea Since the only way to
measure the current rotation is reading the odgmitte accuracy of the angle step is
very bad. Furthermore, the fact that our platfosna itwo-wheeled robot and that it
has to rotate on a carpet floor increases the.elmamost of the cases, indeed, the
robot was not able to complete an entire turn,esithe final error at the end was
about 10-20°. Nevertheless, the panoramic imagenstaiction does not suffer of
such lack. This was something we already realizetbrb implementing the
automatic procedure, when we had to turn the robaually and take snapshots
relying only on the “human precision”, without asgrt of instruments for measuring
angles.

Once a complete sequence of images is available, sibftware starts the
reconstruction of the panorama usingl&A’s based function, as described in 2.2.
Despite the amplitude of the angle step, two maictors have been noted to
influence the success or the failure of the prooedilne number of choseshots for
IMA and the application or not of tli& AHE filter. For the first one, it is obvious
that higher is the number of slots, better is thesdlution” in the match ofMA,
resulting in a more precise alignment of the imadés improvement of the contrast
with the CLAHE filter permits then to highlight features of theese, useful for the
improvement of the match. Of course, richer isdhserved environment of features,
higher is the probability that the match succeddsthe following sequence of
images we show some results with different numibetats and the contribute given
by the CLAHE filter. In Figure 5.5, where only 4 slots has bemsed forIMA and
without contrast filtering, the procedure obvioushailed, resulting in an
incomprehensible overlap of images. The next trifigtire 5.6, where the number of
slots has been increased to 8, is definitely hetvet there are still errors, in
particular due to the failure in the alignment loé tbig cupboard (right part of the
image). A further increase of the slots number @ sufficient to resolve the
problem, as shown in Figure 5.7. Instead, intraolyidihe CLAHE filtering, the
panoramic image in Figure 5.8 is correct. It cansben also that improving the
contrast with such filtering method augments ahet number of visible features. In
particular for the images towards the windows, thieans enhancing their
distinctiveness.

il

Figure 5.5 Panorama reconstruction with 4 slots




44

e

Figure 5.8 Panorama reconstruction with 8 slots ash CLAHE filter

The last important consideration is about the astge. On a first thought, it might
seem that with a small angle the final result lobkgter, since and high number of
images “follows” with more accuracy the perspectisleanges of the scene. In
practice, this is not true. Despite the fact thatenmages means also more time for
reconstructing the panorama, increasing the thainber (i.e. decreasing the angle
step) introduces a significant noise on the finahge, consisting of vertical lines in
correspondence of insertion. This is particulashident observing Figure 5.9, where
the angle step used was 15°, and Figure 5.10, aviékep of 30°. Since this noise
decreases the performances of the place recognitios always better trying to
maximize the angle step, reducing it just when hibsly necessary (for example
when the environment is so poor of features thatréftonstruction fails). For all the
panoramic images of our office environment, inahgdthe corridor, a good choice
has been an angle step of 30°. With the view aafjleur camera, about 40°, this
means an overlap of 10° between to consecutiveamag
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5.1.3 IMA applied to panoramic images

In this section we show some results of the matchaflgorithm applied to a

panoramic image. All the data has been collectathguhe day, whit people and

objects moving, even because a completely statit@rment was not available. In

Figure 5.11 there is the panoramic image reconstufrom the centre of our

laboratory. A few minutes later, after the panorah@s been recorded and the
software reset, we made the robot perform a compégation on the same point the
images were taken, approximately at 10°/s.
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Figure 5.11 Panoramic image of reference

The relative output ofMA (with images scaled to ¥38 pixel, 8 slots an€LAHE
filter) is illustrated by the black line on the ghaof Figure 5.12. It can be noticed
that the match has a mean value higher than 0.8.vldrst cases, for whictMA
returned about 0.7, are in correspondence of thbaard (around 100°, right part of
the panorama) and the shelves (about 350°, lett gfathe panorama). This is
probably due to a combination of imprecision in flEnoramic image and errors
derived by the change of the perspective.
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Figure 5.12 IMA outputs for panoramic image

On the same graph is illustrated also the outpua darther turn, when the person
seated in front of the desk moved away. The redativange can be observed on the
grey line of Figure 5.12, where the output decreaseund 270°, which is in effect
the direction where the person was. It is importanmotice that, even if the output
decreased, the position inside the panoramic invelgere we had the maximum
match (which is also the supposed heading angls) alaays correct. Something
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different we had instead the day after, when wel @gain thdMA output rotating
on the same position and using the panoramic imnéagee day before. The result is
shown in Figure 5.13, where the black line is theautput and the grey one is the
most recent. Despite the fact of a small decreasetd light condition and small
objects in different positions, the main loss oélify is around 90° and 270°, due to
chairs moved (in the second case, also the absdértbe person). In particular, the
arrow on the graph indicates one point where thapaesed position inside the
panorama was completely wrong.

8 50 150 2‘70 360
rotation [deg]

Figure 5.13 IMA output the day after

A last reading has been done trying to “simulate presence of people moving
around the robot. In practice, a person was walknogind it during the measure, at a
distance of about one meter. The panoramic imagefefence was again that one of
the day before. The output result is shown in Fedud 4 with the new grey line. The
points A, B, C, D are relative to the instants when the person wagoint of the
camera and the arrow indicates the only point wiieeeposition in the panoramic
image was wrong.
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Figure 5.14 IMA output the day after with obstacles
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The last result aboutMA applied to panoramic images is perhaps the most
important. As its main purpose is distinguishinffedent locations, we wanted to
compare the result obtained in the last case (aldofamic image and moving
obstacles) with the output of a comparison betwd#ensame snapshots and the
panoramic image relative to another position. er latter, we chose a location in
the same room, just one meter far from the origifidle resulting output is
represented by the black line in Figure 5.15 andpared with the previous one, in

grey.

8 50 1£30 2‘70 360
rotation [deg]

Figure 5.15 IMA output from a different position

Even if the output of the second comparison isvesy low, in general it is well
distinguishable from that one obtained on the rigahoramic image. The cases
where it clearly fails, like the overlap around 31adicated by the arrow, would be
situations of perceptual aliasing. Here it is ewnidéhe necessity of using additional
information for resolving the ambiguity, like thahe provided by odometry and
previous states.

We want to make also some consideration about tingber of slots used biyvA
during the place recognition. When we talked alibatpanoramic image in 5.1.2,
we already saw that in general an increase ofltte sumber permits a more precise
overlap during the procedure of panorama recortsbrudn the case explained there,
a number of 8 slots (combined wWiLAHE filtering) has been sufficient for the
success of the procedure, but for most of the amommic images we preferred to
use a safer number, that is 15. While the incredseich number does not have any
“collateral” effect for the panorama reconstructitime same is not valid during the
place recognition process. As we said, the numbslots is a sort of resolution for
the matching algorithm. When this is too low, th&pmt of IMA is not reliable
because is not able to distinguish clearly diffesenes. On the other hand, a high
number means also an increase of the selectivatysbmetimes may be excessive.
This can be seen from the values reported in Takleand extracted from the
comparison between Figure 5.16 and Figure 5.17 th@élpanoramic image in Figure
5.18. The first one is a snapshot taken in a diffemoment but from the same
position where the panorama has been reconstrutbedsecond one instead is from



48

another position, but pointing to the same scene. Wduld like to have a good
match for Figure 5.16, even if disturbed by thespree of the chair. At the same
tame, we wish the output for Figure 5.17 is as &wossible.

Figure 5.16 Figure 5.17
Slots Match Angle [deqg] Match Angle [deq]
8 0.698817 269° 0.428382 325°
15 0.454976 270° 0.270276 326°

Table 5.1 IMA output for different slots

From the data above, we can see that the incrdatfee slots number effectively
reduces the output relative to Figure 5.17, buhatsame time there is a significant
decrement even on Figure 5.16. In particular, thp getween the two different
images decreases from about 0.27 (for 8 slots)18 (for 15 slots). This means a
worse distinction between the two cases that maymaat the probability of
perceptual aliasing.

o —
Figure 5.16 Same position with chair Figure 5.17 Different position

Tk Sl & R

Figure 5.18 Panoramic image of reference

5.1.4 Precision of the heading angle extraction

In this section we want to show some importantltesegarding the heading angle
extraction usindMA. As we already said in 2.3, this is possible ajpgjythe simple

formula (2.2), supposed we have a direction ofregfee. In our experiment, we
made the robot spinning around a position wherarm@mic image was previously
reconstructed. We collected data of the headindeagigen by the odometry and by
the vision during 10 rotations, measuring every &% angle. In Figure 5.19 we can
observe the final results: on the abscissa thetieeiseal angle, on the ordinate the
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heading angle measured by the robot. The greydifezs to the odometry, the black
one instead is the angle extracted usmg®’.
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Figure 5.19 Heading angle extraction

It is very clear that the angle given by the odomedfter a few rotations, becomes
completely unreliable due to the internal cumukagrror. At the seventh rotation its
error already reachedd5° with respect to the real direction. Insteack teading
angle given from the vision is always betweet®°® and +10°, without suffering of
any cumulative error. The precision of course i$ mgeful for having a perfect
measure of the direction; nevertheless it is gauzligh to correct from time to time
the orientation and help the localization.

5.1.5 Effects of the zoom

An important feature of our system is the use gitdi zoom for enhancing the place
recognition, as explained in 2.4. With the follogigraphs we want to show in
practice what we previously said. In particularmeed to demonstrate that the use of
the zoom in effect increases the capability to gece a place, making the robot
able to identify not just an exact point in the ieowment but the whole surrounding
area. We show then the variation of this area’sedision depends on the distance of
the observed scenes, as mentioned in 2.4.3. Thaemxts are relative to a normal
single image of reference, instead of a panoram&, e order to avoid the noise
caused by the latter and cases where the matelaisve to a wrong position inside
this. Nevertheless, the same principles are vddid when we use panoramic image.
Adopting digital zoom, indeed, has been proved @¢ovbry useful for our place
recognition, as illustrated in 2.4.

In the following illustrations we have the obsensmtne on the top-left corner and
then the relative graphs for five different zoortéais. The first example is reported
below, on Figure 5.20, where the distance fronrti®t and the wall, on the middle
of the scene, is about 4 m. The robot has been dné¥en with respect to the
original position. The variation of thdlA output is reported on the graphs, where
the grey line is the reference, without any zoond &ne black line is relative to the

7 please note that the output given by (3.2) has beaverted from the interval [OTiRto [T, +).
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current zoom factdf. Here, every time we refer to such factor, we ntéan one for
the zoom-in, callegh,, and relative to the gaussian on the left. Thesgiam on the

right is (in theory) symmetrical and depends on zbem-out factorg,y: given by
(3.8).
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Figure 5.20 Digital zoom performances for a distanscene

18 We remind from 4.1.5 that, when we use digitalmptMA is applied three times (no-zoom, zoom-
in and zoom-out) and the considered result is ihledst one.
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Two important considerations arise from the obdeaof the graphs. First of all,
the output is something similar to the combinatbmhree different gaussians, as we
already supposed in 2.4.2. Unfortunately, the anmidi of the external peaks
decreases considerably augmenting the zoom. Debgitiact it is not easy to keep
the robot on the same direction during the trammsiatthe main reason of this
decrease is probably the loss of resolution imgficilerived from the zooming
process. The second consideration regards the ligip®&en the external gaussians
and that one in the middle. From these we cantssehe internal (local) minimum
goes quickly below 0.5, already with a zoom of 20Q%is is because the width of the
gaussians is not very large and the distance flmmobserved scene is quite long.
We remember indeed, from (2.5), that the “virtudi§placement obtained with the
digital zoom is directly proportional to such dista. We can finally note that the
formula (2.5) was just an approximation for an Idease, but in practice the
“virtual” displacement cannot be calculated in m@ie manner. In the case of zoom
20% (an = 1.2), for example, the hypothetical displacem®nshould be 0.67m, but
in practice the relative graph shows two exterralsgians not farther than 0.5m
from the origin. Again, higher is the zoom factioigger is the error. Anyway, except
for these lacks, we can also consider the firse,casth a zoom of %10, a good
improvement of the place recognition compared &dttput without any zoom. For
most of our localization experiments, indeed, thithe value we used (see 5.2).
Now, with the next results we would like to demoatd, in a simple way, the final
considerations we did in 2.4.3 about the use ataligoom. There, we said that the
shape of the recognized area follows that one efafivironment. This because it
strictly depends on the distance from the obseevabkne. According to this, we
repeated the same test illustrated before, buttithis placing the robot just 1 m far
from the closest obstacles. It can be seen on ée picture, in Figure 5.21. The
robot has been then translated again betweln with respect to the original
position and the data collected again for five etéht zoom factors. In the next
graphs, theMA output without any zoom is still grey and the Bléine corresponds
to the current zoom.
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Figure 5.21 Digital zoom performances for a closgcene

Comparing these graphs with the previous, it islewi that observing a closer scene
the “virtual” displacement becomes shorter. Hertbe, recognized area on that
direction is thinner. Indeed, on these last grafifes gaussians are in general
contained in the intervat0.5m, while in the previous case this limit waseatty
passed for a zoom of 30%. Finally, even with a sadiose scene, a zoom factor
On = 1.1 seems to be a good choice.

5.2 Global localization

So far, we examined the performances of the placegnition based only on the
video information. The next step is evaluating thehaviour of the whole
localization system, in particular how it handlesuaions of ambiguity, i.e.
perceptual aliasing, and cases where the obsemngapimvided by the vision is not
good enough to estimate a position. In order tohad, we have to take into account
the odometry information and integrate it with theleo input. This task is
accomplished by the algorithm illustrated in Code 3
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The reader should keep in mind Figure 5.22, coathin the next section, because in
the descriptions of the tests we will often refethe nodes and sometime to the path
there illustrated. Please note also that, when ditb¢rently specified, the next
experiments have been conducted using the followargmeters for the localization
systems:

* greyimages scaled to ¥28 pixel

* IMASslots: 8

» CLAHEfiltering

» digital zoom: 10% 4, = 1.1)

* matching-threshold for destination hypotheses geiwar. 4 = 0.5

« matching-threshold for heading angle correctigyw 0.6

minimum displacement before updating: 10° of rotar 0.3m of translation.

5.2.1 Odometry error

First of all, we need to make some consideratidaugiathe use of the odometry. It is
well known that the information provided by suchiemal reading is subjected to
cumulative errors. These depend on the mechamgakicision of the sensors for the
motion control, normally encoders, but also on exkfactors like slippage of the
wheels or collisions with possible obstacles. Im eavironment, these last factors
have a particular relevance. The whole floor of émvironment available for the
tests, indeed, is covered with carpet that incedabe slippage. Moreover, at
intervals of about two meters from each other,dalae small griddles for the heating
system and every time the robot moves on thens, shaken because of their small
gaps. To have an idea of the unreliability of thlemetry for medium-long path, we
can simply have a look to Figure 5.22 and Figur2350n the first one it is
illustrated a rough map of the laboratory where tdsts have been carried out and
the path followed by the robot, composed of eigifotogical nodes on a grid of
squares 1mlm®. In the second one, it is shown the position gibgrthe odometry
repeating three times the previous path, from 8.tén practice, at the end of the
third round, when the robot was back to the initiatle 1, the odometry reported a
position between 3 and 4. Nevertheless, it caneea slso that for short paths its
precision is quite reliable (for example betweeand 4 in the first round) and can be
successfully used for improving the localizatiostsyn.

19 please note that some area of the laboratorypifgdit be look free on the map, was not available
for the presence of other object not represenileglchairs, cables or power suppliers.
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Figure 5.22 Real path of the robot Figure 5.23 Path given by odometry

5.2.2 Initial position and “kidnapped robot”

Before proceeding with the description of the ekpents, we want to make clear
the independence of the localization procedure ftbeninitial position, important
factor that distinguishes global localization froposition tracking. When the
localization algorithm in Code 3.1 is executed floe first time, the activities are
equally distributed among all the possible topatagipositions, which means also
theorigins set contains all the given nodes and each of tiesran initial activity so
that the sum is 1. For the path in Figure 5.22,efommple, the real initial position
was node 1, but at the first iteration of the lazlon algorithm it was supposed
node 5. Nevertheless, since at the beginning alintbdes were considered possible
origins, each one with activity 0.125, the corrposition was estimated quickly. In
particular, as we will see in the following sectidhe value 0.125 is very low
compared to the mean activity of the next estimdtstinations, therefore the initial
position was normally recognized in a few updagpst as soon as good observation
was available.

A similar consideration can be done for the soethtkidnapped robot” case, that is
when the previous estimated location comes ouetodmpletely wrong. Even in this
situation, since the localization system is strgrgsed on its place recognition part,
the correct position is recovered in a few updédpss provided that the robot is in
proximity of a recognizable place. In practice thdnapping is resolved only by
destination hypotheses generated after a good \aigeT, when one or more image
matches returns a value higher than the choseshibice For all the tests we did,
depriving the robot of the video input and repositng it without influencing the
odometry, the correct destination was recoveratbimore than two or three update
steps, starting from the moment the video was alkiland the current position was
close to a map’s node.
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5.2.3 Localization with old panoramic images

As we already said at the beginning of the chapter|aboratory where most of the
tests have been carried out is a square fdofrabout &6n7. Looking at the map in
Figure 5.22, on the top and right edges there amgleawide windows, so the light
conditions changed significantly during the dayerewith closed curtains. Most of
the furniture consists of similar desks and offtbairs, identical computers, shelves
and a big cupboard. The desks in particular weee rtain cause of perceptual
aliasing. The bottom part of the room was also pimali by power-supplier, plugs
and cables, not illustrated on the map. In practibe nodes 1-8 covered quite
uniformly most of the space available for the rédbotove. We will see later some
experiments conducted in a bigger environment, eivee used a corridor and a
small entry adjacent to the laboratory.

In this first localization test, we provided thebod with a map of the possible
locations, containing the coordinates and the ganar images relative to the eight
nodes of Figure 5.22. All the panoramic images usedhe laboratory were two
days old; this means that several small changakanenvironment, like different
positions of chairs, people and objects, introduaesignificant noise on the place
recognition process. It is also important to ndtatt during this test, we kept the
robot always at a certain distance from the ceotrthe nodes, generally moving it
on an external perimeter about 30cm far from th@ime reason was obviously
because we wanted to avoid the exact points whergotvthe panoramic images and
verify also the efficiency of the digital zoom. Tke#re, we were not recognizing the
precise metrical position but the more general atgeently explored. The only case
when the robot was exactly on node 1 is at thenmegg of the first round, just to
speed up the initial localization as explained.i 2 On the following Table 5.2 we
can observe a sequence of locations identifiechbysystem at the tenth round. Each
line corresponds to a time-step for the executibthe localization algorithm, with
the node of the most probable position and relasiegvity. When no activity is
specified, it means there were not new destinadtigrotheses in that case and the
position was calculated only using the previousnegion and the odometry
displacement, as explained in 3.8. In this tri@ tbpological positions were always
correct. Looking at Table 5.2, it is worthwhile tote that for the node 3 there are
not activities because the observations at that embrdid not return a matching-
value higher than the threshold. In practice, duthe path between node 2 and 4 the
robot could rely only on the past history and thierent odometry. One could also
have expected a higher number of updates, sincdistence covered in one round
was longer than 8m (perimeter of the path 1-8) #redminimum displacement in
translation was 0.3m, as we already said. Considaxiso that several updates were
done just turning around the corners, for a mininangle step of 10°, the theoretical
number of localizations should be even higher. dality there were many other
factors that introduced a delay between two cortsecupdate steps; some of them
were the video-processing time, the wireless ndéwaymmunication, the data

20 Actually, on the bottom edge of Figure 5.22 thisranother small area part of the laboratory, about
2x4nt, but it was interdicted to the robot by a step mothted with a grey panel 1.5m high. Eventual
changes inside this area did not influence themisiystem.
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logging and, last but not least, the fact that tbleot was continuously moving,
without stopping at any particular location.

node

activity

0.380993
0.549102

0.386157

0.536337
0.572498

O, DMWOWWONDNERERE

0.520742

node activity

5 0.569589
5 0.277236

6 0.33679
6 -

7 -

7 0.430568

7 0.332822

8 0.55233
8 -
8 0.309363

8 0.326927
1 0.199804

Table 5.2 Localization steps after ten rounds

Unfortunately the localization did not always swede&ompletely. On a total amount
of 255 update steps, we registered 12 cases akeAmong them, 11 were within
1m, that is the robot thought to be on a topoldgitace adjacent the real one. In one
occasion the estimated position was completely girdh detailed description of
these cases is reported in the following Tableab@® Table 5.4.

Number of update steps 255

Destinations

Normal
Virtual 40
Supposed places 62

193 (mean activity: 0.4633)
153 (mean match: 0.6448)

Table 5.3 Description of the update steps

Error cases

12

Adjacent position

11

Node 6
Node 7
Node 5
Node 2

6
3
1
1

Completely wrong

Node 4 (real was 1)

1

(match: 0.644425 - activit89293)

Table 5.4 Description of the error cases
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On Table 5.3 we can observe that during the loatiin process in 193 cases the
returned position was a destination generated byatborithm, therefore involving
the update of the activities. Of these, 153 wheremal destinations, for which the
observation gave a matching-value (in mean 0.64#f)er than the threshold. The
other 40 were instead virtual destinations, asrdestt in 3.2.1. Before analysing the
errors for which the real position was an adjaced, let us consider the last case of
Table 5.4, which is the completely wrong positidbhe main reason of such fail is a
situation of perceptual aliasing with a high (wrpmgatching-value of 0.644425,
comparable to the mean of the correct observattogsther with a bad combination
of odometry and origins. As can be see from thaluswap in Figure 5.22, the robot
moved from node 8 to 1, but the scene pointed bycdmera (a desk in front of a
window) could look very similar in case the robatved from node 3 to 4.

The other cases, besides being smaller and perhapes “acceptable” for a dense
topological disposition like ours, are also easteunderstand. We saw from Table
5.4 that the most frequent error was on node & sense that it has been omitted
several times on the short path.6- 7, as indicated by the grey arrow between
node 5 and 7 in Figure 5.24. The main reason wasfalst we were moving
following an external perimeter, similar to the ygkashed line in figure, in order to
avoid the exact centres where the panoramic imhagdseen reconstructed. It was
possible therefore that sometimes, for its posibanthe concave part of the path,
node 5 was omitted. More significantly are instéael other five error cases, which
basically suffered of a common lack. These erroestlae omission of the nodes 7, 5
and 2, as indicated by the remaining three gregwasrin Figure 5.24, respectively
6-8, 4-6 and 1 3. For them, it has been noted that the problemasly due to
the way we reset the odometry each time a desiimdtas been estimated. Let us
consider the last error, for example. When the radbonoving from node 1 to node
2, in the middle of the tract it might happen thahew observation (and relative
update process) returns again node 1 as curreitiopo£onsequently the odometry
is reset (with the meaning we gave'fhto the coordinates of node 1. At that point, if
no good observations are available passing throogle 2, the robot can estimate its
position only using the odomeffy which could still return node 1 as more
proximate. This position would be eventually kepttilu a new observation
recognizes node 3 or the displacement given bypdoenetry is long enough.

2L Note that a position given exclusively by the oétmyn means there are not destinations generated
by IMA, hence there is not any reset to the coordindtssah position. See the localization algorithm
in Code 3.1.
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Figure 5.24 Real path of the robot and error cases

As can be seen on the figure, the same consideratiold be applied to the other
error cases. This suggests a more accurate usdative displacements should be
thought, maybe including a distinction between ole#ns with or without zoom,
S0 to reduce excessive resetting of the odometry.

A last note about the results obtained for this eexpent. We would like to
remember that the panoramic images used for theeptacognition had been
reconstructed two days before, as we already J&id.same tests performed with
fresh images, taken just one or two hours befoage gnuch better results and no
cases of error. This because with updated infoondtie cases of perceptual aliasing
were significantly reduced and the few situationhwuch ambiguity were resolved
correctly by an enhanced matching-value. For exantpe mean match for a series
of correct destinations, generated during a tridh wvaew panoramic images, was
0.73275. Compared with the previous mean, 0.644i8, denotes an increase of
about 14% in the matching process. This improvemedite us think that a future
implementation of active localization, where thbabkeeps constantly up to date the
internal panoramic images, could successfully hantlig changes in the
environment.

5.2.4 Localization performances for dynamic environment

The same procedure has been used to test thezhttah system in a dynamic
environment. This time we made use of updated @anas, reconstructed the same
day. The robot performed again 10 rounds followihg path of Figure 5.22, still
moving on an external perimeter so to avoid thecexantres of the topological
position. During these trials, two people were garmdusly moving around the robot,
sometimes walking or standing in front of the caan@nd sometimes simply sitting
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on the chairs. Examples of such situations arstiied in the robot’s snapshots of
Figure 5.25.

Figure 5.25 Snapshots of dynamic environment

With the same method adopted for the previous éxgait, we can describe this
new one with the next Table 5.5. Observing it, &g notice that the results are very
similar to the previous case, where the panorammages were older but the
environment was also less influenced by the people.

Number of update stepg 253 (90 involving peoplsgmee)

Destinations 184 (mean activity: 0.4986)
Normal 150 (mean match: 0.6654)
Virtual 34

Supposed places 69

Table 5.5 Description of the update steps

From the table above, we can see we had almosathe number of total updates, as
expected since the length of the path was simifamparticular, checking all the
shapshots taken during those updates, we foun@ of them the scene was partially
or completely obstructed by the people. In pragtioe about 35% of the path the
robot had to handle the loss of information dudntonan presence. In most of the
cases, when the view was just partially obstructieel,localization system was able
to correctly distinct the place using the remainpagt of image. When instead a
person occupied the whole camera’s view, the robliéd only on the odometry
from the last recognized place, so just “suppositagbe on a certain position. An
example of such situation is explained by the segeien Figure 5.26, where the
robot identified the correct place by the firstgsiaot and then, still moving with the
person in front of the camera, estimated the copesitions just with the odometry
until two nodes ahead, when finally the person rdowat of the view.

Figure 5.26 Complete obstruction of the camera’siew
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In this experiment the total number of failures veamsiderably lower than in the

previous one: 3 incorrect positions against 12sTeimainly due to the improvement
given to the place recognition process with theatgd panoramic images. However,
the errors occurred during this localization testia some way more critical, as for
all of them the correct positions were not on agljacrodes (at least with respect to
the sequence of the path in Figure 5.22). It sesamyw/ay that the errors, in terms of
metrical distance, were limited by a radius of 1,.%out the length of a square’s
diagonal (remind the nodes laid on a grid of sgudrex1m). Since the objective of

this experiment was verifying the performances ted tocalization system when

considerably disturbed by people presence, in Tallewe separated the errors
occurred while someone was obstructing the camerais from that one happened

without human interference.

Error cases 3

People 2
Node 3 (real was 6) 1 (match: 0.678683 - actiViti330785)
Node 3 (real was 5) 1 (match: 0.570505 - activit$12187)
No people 1
Node 1 (real was 7) 1 (match: 0.600372 - activitpl17251)

Table 5.6 Description of the error cases

The first two errors are relative to the first twoages in Figure 5.27, where the
presence of a person obstructed part of the sddre.reduced video information
obtained from the real positions node 6 and 5 lmtdeen sufficient to resolve the
perceptual aliasing with node 3, even with the leélpdometry. The third error case,
relative to the last snapshot in Figure 5.27, dil adepend on people presence but
just on the poor quantity of features of that gaifair scene.

Figure 5.27 Snapshots of error cases

Analysing the detailed log of the update processes,noted that the correct
positions were always present among the currentergéed destinations.
Unfortunately, in all the three cases the odometfgrmation has not been strong
enough to reduce the influence of the wrong hymashd his is probably due to the
same lack revealed in 5.2.3, that is the rought relsthe odometry, combined also
with the particular dense distribution of topolagiaodes.
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5.2.5 Perceptual aliasing

We know that perceptual aliasing is one of the ésggproblems in place recognition,
independently of the sensor used for the obsenvaifothe environment: camera,
sonar, laser and so on. With this example we wanshow a case where the
localization algorithm resolved a situation of pptual aliasing. The robot was in
the position characterized by node 1 on Figure &&2 performing a rotation. At a
certain time-step, two different destination hymstés have been generated. These
were the real position of the robot, node 1, anutfaer possible destination, node 2.
For the lattetMA gave a matching-value higher than for the compéate. However,
after the update process, the destination withhtgkest activity was in effect node
1, the right position. In Table 5.7 are shown somatues recorded during such
update process. On the left there are the possiins, as result of the previous
update, with their relative activities. The nodehathe symbol is the virtual-origin
(previous virtual-destination), which is equivalettt the normal origin in this
particular case. On the right of the table there the possible destinations, with a
matching-value higher then 0.5. Again, the destmatvith the symbol' is the
virtual one.

Origin Destination

node activity node matchMA) activity

1 0.470396 1 0.611119 0.418523

1Y 0.529604 2 0.65027 0.249694
1Y 0.5 0.331782

Table 5.7 Activities update for solving perceptuadliasing

The destination highlighted is most active and #focorrect one in reality. We see
that believing only on the video information wouldve made the localization fail,
since node 2 had the highest matching values. tRihsalike this happened quite
often, in particular when the camera was pointm@tscene considerably changed
from the original one, or when some temporary atlstalike a person, was
obstructing the view.

5.2.6 Virtual destination

In the following case, we illustrate an example wehehe virtual-destination,
introduced in 3.2.1, helps to localize the robotrectly, despite the absence of a
correct observation. Referring again to the pdtistitated in Figure 5.22, the robot
moved from node 8 to 1. In this case it was nog¢ ablrecognize the correct position
with the vision. Instead, it got an observationisgythat it was in node 2 with a
matching-value 0.541098. Nevertheless, at the kadirtual-destination “lhad the
higher activity and the localization succeeded. &kact values involved in this step
are reported below on Table 5.8.
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Origin Destination

node activity node matchiA) activity

1 0.235045 2 0.541098 0.441696
8 0.341719 1’ 0.5 0.558304

4 0.129596

g8’ 0.29364

Table 5.8 Activities update for virtual-destinatian choice

5.2.7 Heading angle correction

We saw in 3.7 the importance of the heading andiesctly connected to the
orientation of the internal frame of reference. Wso showed in 5.1.4 that it is
possible to retrieve the absolute orientation efribbot using the panoramic images,
whenever these have been reconstructed starting thhe same absolute direction.
This orientation was not influenced by cumulativeoes, like the odometry, and its
precision was good enough for correcting the irgteimeading angle. With the
following experiment we want to demonstrate thakeffect this method has been
applied successfully in our localization system.slhme way, it can substitute a
compass whenever this is not available or the magrdisturbances in the
environment do not permit its use. Referring toribgt Figure 5.28, we started from
a situation where the robot was corrected local@edode 1 and the odometry reset.
Then we covered the camera view, so that the ralast not able to use the video
input and could only localize itself with the odanye as if it was “blind”. Still from
node 1, we turned the robot of abe@®0° (quarter of clockwise revolution) without
influencing the odometry and then we made it penfog the same complete path we
used for the previous experiments.

Figure 5.28 Wrong heading angle Figure 5.29 Heading angle corrected
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In Figure 5.28 we can see the real path indicayetthé arrows and the path given by
the odometry with the grey line. As expected, thape is almost similar, but the
odometry’s is clearly rotated of 90°. Of courselev/the robot moved without using
vision, the nodes estimated with the only odometeye completely wrong, in order
1-6-7-8-1-2-1 (we omitted here repetitions of the same nodégrAaving
completed the first round, we uncovered the carardilet the robot relocalize itself
on node 1 with a couple of update steps. Finallyostructed the camera again and
moved the robot following the previous path. Thied the odometry’'s track was
well oriented, as shown from the grey line in Fgbr29, and the reported sequence
of nodes was 2-3-4-.5-6-7-8-1. This means also the internal frame of
reference was correctly aligned with that one efrtiap, thanks to the last extraction
of the heading angle from the panoramic image denb

5.2.8 Localization in a bigger environment

So far we presented results for experiments coeduotthe laboratory. Though such
room was very challenging, in particular for thegence of repetitive furniture and
difficult light conditions, we wanted to show therformance of the localization
system in a bigger environment. We then mappeddgcent corridor connected to
the laboratory through a small entry, as showniguie 5.30. The new added places
are quite narrow, justx2ny’ for the entry and aboutx20n? for the corridor, and
both illuminated only by artificial light. We alrdg saw, in the previous Figure 5.10,
an example of panorama taken from the corridor.

ST Ma AT a2t 0 |

Figure 5.30 Map of laboratory and corridor with reference path

For this enlarged environment we fixed a new pdtheterence, extended that one
used until now in a way to cover all the lengthtod corridor. This path is indicated
by the arrows in Figure 5.30. In practice, startagpin from node 1, the robot
followed again the sequence of nodes from 1 tohgrd it changed to 9 and moved
towards the end of the corridor, which is nodeFHiBally it came back to reach again
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node 1. It is interesting to have a look to théhpaktasured by the odometry after just
one trial. We can see from Figure 5.31 that, irstefaterminating on the starting
point node 1, the final measure reported a possieveral meters far and with an
error of almost 90° for the direction (compare tnentation of the final track with
the direction of the real sub-path.8- 1).

Figure 5.31 Odometry error for path including corridor

Below we report some data related just to one, tsi@mice successive repeats of the
same path returned similar results and are therefot very significant. Like for the
former cases, the robot moved always avoiding t#textecentre of the topological
places. All the parameters of the localization atgm (slots, zoom, thresholds, etc.)
were the same previously adopted for the laborafdng only difference was the use
of additional panoramic images for the added nofegether with an updated
topological map, of course). Here some specificatitust be done. Between two
different rooms there are doors, not representeith@map, so one door between the
laboratory and the entry and another one for goitgthe corridor. The panoramas
of the nodes between 1 and 8 had been reconstructéde same day of the
experiment but with closed doors. For node 9, asteve provided the robot with a
new panoramic image taken with the doors openthdiremaining nodes, from 10
to 15, had images taken with closed doors. Thislitimm, besides the fact that made
us save some time for the panoramas’ reconstryotv@s useful to introduce some
additional noise on the place recognition. Furtt@enthe latter images had been
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taken a few weeks before but this did not influetice place recognition since
practically there has not been any change in they @n the corridor. Details of this
experiment, after following the new path once,reqorted in Table 5.9

Number of update steps 51 (30 in the laboratoryn2he entry / corridor)

Destinations 33 (mean activity: 0.5026)
Normal 23 (mean match: 0.6642)
Virtual 10

Supposed places 18

Table 5.9 Description of the update steps for patimcluding corridor

From the table above, we can see that the aveddgesivity and matching-value are
in practice the same as the previous experimendweiad only in the laboratory.
What is considerably changed is the number of nbdwustinations compared with
the virtual ones and the supposed places. The alexid normal destinations means
that in general the place recognition was lessbdi and more credibility has been
done to the odometry information. Most of the casésvirtual destination or
supposed place happened inside the corridor andning, showing the difficulty of
recognizing places in narrow places like those.éxteless, the reduced number of
good observations was enough for the localizatiosuicceed. The only error indeed
was missing node 10 (the small entry) when the tredms coming back from the
corridor. This was probably due to the doors, dosestead that open like in the
recorded panorama, and to the inaccurate odonmedef,ras we already mentioned in
5.2.3and 5.2.4.

5.2.9 Some considerations on the experiments

We would like to conclude the experimental evaluatof the localization system
with some clarifications. First of all, the readould have noted that for the whole
set of experiments here presented we always magdefuke digital zoom. Indeed,
such feature was an essential component for theessoof the localization, since
without it the system would not have been abledeniify most of the topological
nodes, at least those for which the robot did mssghrough exactly.

We want also to specify that in these experimergsmade use of fixed, circular
paths just for having simple and clear referentegeality, the number of tested
routes was much higher, including more or less spfileed or random paths and so
on. A particular case that is worthy to mentiothis random autonomous navigation
inside the laboratory using an additional omni-cli@al vision sensor. This device
has been designed by the author and utilized byllaague for obstacle-avoidance
[MDAO4]. Details on the design are reported in Apgi 0. During the navigation
inside the laboratory, with the presence of fixednoving obstacles, the localization
software was also active and kept track of theerurrobot’s position. Even if still in
an early stage, the successful combination of dwalization and the obstacle-
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avoidance modules let us hope in promising resfdtsa more sophisticated
navigation system in the future.
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6 CONCLUSIONS

6.1 Evaluation

We presented an image-based localization systeminfimor environments that
makes use of a simple unidirectional camera andmetly information. Our
approach is strongly based on place recognitionwiich we developed a new
algorithm that makes use of classical image pracgs3he same algorithm permits
also the generation of panoramic images used fppmg the environment. Within a
probabilistic framework, the odometry is then imtggd with the video information
to resolve cases of ambiguity. Finally, the sofevamplementation of the
localization system has been thought in a way tasomore general as possible, so to
be easily portable on any robot platform providethwa camera.

The image-matching algorithm here adopted doegeigton particular features of
the environment. Compared to other methods basddraimarks, either natural or
artificial, our system takes into account much marrmation for the place
recognition task. This is true also if we considgeiutions based on histogram
matching. Furthermore, we do not make use of anypticated sensor model for our
vision system, which is often one of the criticalmis in the performances of many
localization approaches.

The procedure for generating panoramic images aedrelative heading angle
extraction gave remarkable results, consideringpofse the hardware limitations we
had to deal with. The numerous experiments predestiew also the robustness of
our approach, even in case of dynamic environmemizking the localization
suitable for service-robot applications.

However, from our results arose also the necess$ityproving the image-matching
algorithm to make it less sensible to occlusionsl éght conditions. A more
appropriate way of resetting the odometry woul diglp to reduce considerably
cases of failure.

6.2 Recommendation for further work

Besides resolving the lacks mentioned above, tasrgwo main topics that would
be worth exploring in the future: the automatic afedof panoramic images and the
use of incremental digital zoom. The first one doaertainly boost up the place
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recognition, becoming also a natural step towardsomplete system of self-
localization and map-learning (SLAM). The secon@ @ an innovative technique
that we have just introduced but which shows gne@mise to improve the
effectiveness of the localisation. By adding inceamal digital zoom to the frame
captured by the camera indeed, we can identify fofle” map locations. It would

be interesting extending this technique to suppaerpolation of location between
map nodes.
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APPENDICES

A Normalized Correlation Coefficient

Normalized Correlation Coefficienor simplyNCC, is a measure of the similarity
between two images. The equatioN&Cis as follows:

> [T@b)-T, ]I (x+a,y+b)=1,,(x y)]

c(x,y) = —=2 (A.1)
\/Z[T(a,b)—Tm]Z D [1(x+a,y+b)~1,(xy)
-1
m_wmgﬂam (A.2)
Im(x,y):W—EaZb:I(x+a,y+b) (A.3)

T is the template image, of dimensianh pixel, and T, is the relative mean
brightnessl is the reference image, equal or greater thandl (X, y) is the relative

mean brightness calculated for an asdastarting from the pixebq y).

NCC is normalized since the output range is in theriral [-1, +1]. However, for

our purpose, such range is modified to lay ont[], This is done with the following
simple conversion:

c(xy)+1

c(xy)= 5

(A.4)
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B The PeopleBot robot

The robot used for the experiments is a PerformdPeepleBot™ produced by
ActivMedia Robotics and available at the Centre ybrid Intelligent Systems,
University of Sunderland. This robot, which is bdsen a standard two-wheels
Pioneer-2 platform, is particularly indicated fdudies and applications involving
human-robot interaction. The PeopleBot indeed igeqgtall (the height of the top
deck is 1115mm) and rich of devices that makeasitee for applications including
navigation, vision, speech and simple objects hagdBelow we illustrate the main
features of the robot; they can also be observat@draft in Figure B.1.

BASIC FEATURES

- Computing hardware: integrated PC with CPU PentilinYOOMHz and 256MB
of RAM. Support for PC104 expansion cards.

- Operating Systems: RedHat Linux and MS Windows

- Networking: integrated PCMCIA Wireless Card (withid&ional antenna on the
top deck) and RJ-15 connector for Ethernet comnatioic

- Autonomy: three batteries 12V, 7Ah (total 252Wh)

SENSORY INPUT

- Odometry: quadrature shaft encoders, 500 ticksgyeriution

- Vision: colour PTZ camera, video resolution 380.0005C pixels
- Audio: two microphones

- Proximity: sonar arrays (bottom and front-top oé ttobot), protective IRs and
bumpers

- Object-detectors: IR table-sensors and gripperkieams

ACTUATORS/ OUTPUT

- two DC motors (wheels)

- gripper (2 d.o.f.) with grasping pressure control
- two speakers

A real image of our robot, callddIRA, can be observed in Figure B.2, where it is
also equipped on the top with an omni-direction&ion sensor for obstacle
avoidance (see Appendix C).
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Figure B.1 PeopleBot features

Figure B.2 MIRA robot




74

C Omni-directional vision sensor for obstacle
avoidance

In Mobile Robotics, an essential part of the natige task is the Obstacle
Avoidance module. Nowadays, many techniques diitiph simple sonar sensors.
Unfortunately these are proved to be very unreiablthe mid-long range and, even
in the short range, the quality of the measuresngty depend on the physic
characteristics of the obstacles (i.e. material ahdpe). In this sense, an omni-
directional vision sensor is a valid alternativehefefore we designed and
implemented an inexpensive omni-directional cammmaed on a simple conical
reflector.

C.1 An overview of the omni-directional vision sensor

The whole system consists basically of three mamponents: a camera, a reflector
and a frame to sustain and mount them on the rdlbatway it works is quite simple
and is illustrated in Figure C.1. On the top thieréne reflector, the shape of which
could be conical, hemi-spherical, parabolic or arsgr defined axial symmetric
profile. The surface of the reflector is polishedniake it into a mirror. Below the
mirror, a camera is mounted with the optical axkgnad with the axes of the
reflector. The camera captures the image mirrosethé reflector, which provides a
360° view of the environment around the robot. €brical view volume and image
transfer function depends upon the shape of thectef. The system can be realized
with relative inexpensive components, whilst enapk high quality of images to be
retrieved. In our design, the use of an aluminieffector and a simple webcam give
remarkable results. The reflector is aluminium mduelt and polished on Numeric
Control machines. The camera, a compact commetd®B webcam with a
resolution of 640x480 pixel and a frame-rate of 188, is suitable for visual
processing in real-time tasks. Both these comparemet sustained by a robust frame,
built using light materials like aluminium and pighas type. Several adjusters are
provided to align the optic axes of the reflectod @amera.

C.2 Design of the conical mirror

The easiest shape of the reflector, both for treization and for the image
interpretation, is a cone. The dimensions of theica reflector must be calculated
considering its height from the floor and the ranfjghe panoramic view we want to
obtain. Of course, we must take care of some aingdr given by the available
technology. Using a general procedure that cong$tshree simple steps, the
dimensions of a conical reflector can be easilgwdated. All the symbols in the
following formulas are explained by Figure C.1, utig C.2 and Figure C.3.
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1) Givend andH, calculate the anglg:
1 d
=—arctan — C1l
y-Laraf ¢ e
2) Given D, calculate the anglie(we considered < H and h<< H):
D
B Darctar(ﬁj -2y (C.2)

3) Finally, the next relation can be used to dimensiareflector:

1

11 (C.3)
h tangtany

From the last step, fixing one dimensibmr h, it is possible calculate the other one
(note also that =r [tany).

i
Figure C.2 Dimensions of the system camera-refleunt
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D

Figure C.3 Height and range of view of the omni-dectional vision sensor

C.3 Camera and supporting frame

The system can be realized with relative inexpensomponents, whilst enabling a
high quality of images to be retrieved. In our dasithe use of an aluminium
reflector and a simple webcam give remarkable testihe reflector is aluminium
made, built and polished on Numeric Control machinEhe camera, a compact
commercial USB webcam with a resolution of 640x4f#el and a frame-rate of
30fps, is suitable for visual processing in reaiditasks. Both these components are
sustained by a robust frame, built using light mate like aluminium and plexiglas
type. Several adjusters are provided to align thgcoaxes of the reflector and
camera. The whole omni-directional vision sens@hiswn in Figure C.4 and also in
the previous Figure B.2, where is mounted on thetoFinally, Figure C.5 reports
an example of omni-directional image taken with semsor.

-

Figure C.4 Omni-directional Figure C.5 Example of omni-directional
vision sensor image
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