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Abstract—In this paper we present a multi-sensor fusion
system for tracking people with a mobile robot, which integrates
the information provided by a laser range sensor and a PTZ
camera. We introduce the algorithms used for detecting legs
from laser scans and faces from video images, then we illustrate
a human motion model for the estimation of people position,
orientation and height. The ego-motion of the robot is also taken
into account and the information fused using an implementation
of the Unscented Kalman Filter. Finally, multiple human tracks
are generated and maintained thanks to an appropriate data
association procedure. The results of several experiments are
illustrated, proving the effectiveness of our approach, and some
considerations drawn.

I. INTRODUCTION

In recent years there has been an increasing interest towards

the social aspect of mobile robots, with a growing number

of applications which involves interaction between robots and

general public. A relatively new subject, called Human Robot

Interaction (HRI), has attracted the attention of a big part

of the research community as well as industry. For these

social robots, interacting does not only mean having good

communication skills, but also reacting properly to the people

and be aware of their presence. In this context, a system able to

track the persons around the robot is helpful, if not necessary.

Several techniques for multi-target tracking, used in the past

mainly for aviation and military applications, can be applied to

the sensor equipment of a mobile robot to track nearby people.

The task is particularly challenging because the human motion

is very unpredictable. Other factors related to the environment

and the sensor performance may also put strict limits on the

capacity to detect people and distinguish individuals.

In literature, there is a consistent number of solutions for

tracking people with a mobile robot, but most of them can

be categorized using the following criteria: a) tracking one vs.
many people and b) from a fixed vs. moving platform. The
work presented in [1] is an example of people tracking from

a fixed position where they use stereo-vision to detect and

track multiple persons, each of them is assigned a Kalman

filter. Same filter but different sensor are used instead in [2],

where the static robot can track people with a 2D laser using

motion patterns previously learnt. A laser is also used in [3]

to detect walking humans: the difference in this case is that

the robot can move but only one person at a time can be

tracked. Stereo-vision and Kalman filter are used again in [4]

for the tracking of a single human while the robot moves to

accomplish a following behaviour. As expected, there are less

examples where the robot can move and at the same time track

multiple humans. Among them there is the solutions adopted

in [5], where they use particle filters to perform simultaneous

localization and people tracking based on laser range readings.

This approach however is based on a simple Brownian model

of the human motion, which seems not particularly robust

in case of clutters (e.g. two people walking closely). Laser

and particle filters are also used while the robot is moving in

[6], performing multiple tracking with Joint Probabilistic Data

Association (JPDA) and adopting a linear motion model of the

humans to reduce the clutter problem.

In all these cases, tracking is performed using one single

device, laser or camera. When both are present, the laser is

normally preferred for the tracking part, while the camera is

only used to extract some features which help to identify the

person. Our approach instead shows how the data from the two

devices can be successfully fused using an implementation of

Unscented Kalman Filter, obtaining additional information and

improving the tracking performance.

This paper is organized as follows. Section II introduces

our sensors and algorithms for people detection; Section III

describes the human state estimator; Section IV explains

the data association procedure; Section V illustrates several

experimental results and analysis; finally Section VI presents

a brief conclusion and future work.

II. PEOPLE DETECTION

The components of a tracking system are the sensors used

to detect the targets and the algorithms for elaborating the

information provided by them. The robot we use is equipped

with a laser range sensor and a PTZ camera. The laser, which

covers the semi-circular area in front of the robot, is placed

a few decimeters from the floor, so that the scanning can

detect human legs in most of the cases. The camera instead is

mounted on a special support, approximately 1.5m high, in a
good position to spot faces.

A. Legs Detection

Laser range sensors are often used to detect persons [3],

[7]. However in most of the cases they consider only moving

objects, which means a static human cannot be detected.

Moreover, with such an approach it becomes problematic

to observe walking people while the robot is also moving,
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Fig. 1. Legs patterns extracted from a laser scan. Patterns (a) and (b) are
very seldom confused with other objects, while (c) can be a little ambiguous
for particular environments.

because the ego-motion must be compensated. Our algorithm

instead, derived from a previous work [8], is based on the

recognition of three typical legs patterns which are extracted

from a laser scan, as illustrated in Fig. 1. Of course these

patterns are constrained by some dimensional limits. Thanks

also to the high precision of the laser device, the procedure

returns accurate bearing bl and distance rl of the people within

a range of several meters.

B. Face Detection

The face detection system is an improved version of our

previous work [8], which is based on the object detection

algorithm of [9] and performs well in real time even under

challenging conditions. Thanks to simple transformations, the

position of each face in the image is converted to get the

relative bearing bf and elevation ef with respect to the current

camera orientation. An example of face detection is illustrated

in Fig. 2.

III. STATE ESTIMATION

Tracking a walking person is a challenging task, even

more complex if performed from a mobile platform. The

Kalman filter [10] is a well known Bayesan estimator which

provides an elegant way to fuse the information from different

sources. We introduce briefly a recent variant of this estimator

which is normally used for non-linear systems: the Unscented

Kalman Filter (UKF) [11]. Then we illustrate the prediction

and observation models used by this filter to estimate the

human state.

A. Unscented Kalman Filter

A typical non-linear system can be written as follows:

xk = f(xk−1,uk−1,wk−1)
zk = h(xk,vk)

(1)

where x and z are respectively the state and the observation

vectors, u is the control input, w and v are noises and k is
the current time step. Instead of using a linear approximation

like in the EKF [10], the UKF models the state uncertainty

with a set of weighted sample points, called also sigma points,

Fig. 2. Example of face detection. From the x-y position of the face on the
image, bearing and elevation relative to the camera are easily computed.

in order to capture the true mean and covariance for any non-

linear system. These points XXX i and associated weights Wi are

calculated as follows:

XXX 0 = x̄ W0 = β/ (n + β)

XXX i = x̄ +
(√

(n + β)Pxx

)
i

Wi = 1/2 (n + β)

XXX i+n = x̄ −
(√

(n + β)Pxx

)
i

Wi+n = 1/2 (n + β)

(2)

for i = 1, . . . , n, where x̄, Pxx and n are respectively mean,
covariance and dimension of the state x, β is a parameter
for tuning the higher order moments of the approximation

(normally set so that n + β = 3 for Gaussian distributions)

and
(√

(n + β)Pxx

)
i
is the ith column or row of the matrix

square root of Pxx. Mean and covariance of the non-linear

transformation y = f(x) are calculated as follows:

YYYi = f (XXX i) (3)

ȳ =
2n∑
i=0

WiYYYi (4)

Pyy =
2n∑
i=0

Wi [YYYi − ȳ] [YYYi − ȳ]
T

(5)

This procedure, called unscented transformation (UT), is at

the base of the current filter1.
Like for the EKF, the estimation procedure of the UKF

consists of two steps, prediction and correction. First of all,

the state is augmented to include the process noise2, so to have
xa = [x w]

T
, and the relative 2na + 1 sigma points XXX i are

generated from the last estimation using (2). Then the a priori
mean and covariance of the state are predicted with the UT:

XXX i
−

k = f (XXX ik−1,uk−1) for i = 0, . . . , 2na (6)

x̂a−
k =

2na∑
i=0

WiXXX i
−

k (7)

P−

k =

2na∑
i=0

Wi

[
XXX i

−

k − x̂a−
k

] [
XXX i

−

k − x̂a−
k

]T
(8)

1To avoid non-positive, semidefinite covariances when β < 0, it is possible
to use a modified form [12] given byPMOD

yy = Pyy+[YYY0 − ȳ] [YYY0 − ȳ]T .
2The observation noise v could be also included in xa.
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For the correction stage, the UT is used again to predict the

observation as follows:

ZZZik = h
(
XXX i

−

k

)
for i = 0, . . . , 2na (9)

ẑk =

2na∑
i=0

WiZZZik (10)

The innovation covariance and the cross-correlation matrices

are then computed using the following equations:

Pννk = Rk +

2na∑
i=0

Wi [ZZZik − ẑk] [ZZZik − ẑk]
T

(11)

Pxzk =

2na∑
i=0

Wi

[
XXX i

−

k − x̂a−
k

]
[ZZZik − ẑk]

T
(12)

Finally, the gain Kk is calculated and used to correct the

estimation and its covariance as follows:

Kk = PxzkPνν
−1

k (13)

x̂a
k = x̂a−

k + Kk [yk − ẑk] (14)

Pk = P−

k − KkPννkK
T
k (15)

where yk is the current measure given by the sensor.

Despite the increased complexity due to the sigma points,

the advantage of the UKF with respect to the EKF is that the

absence of linearization improves the estimation performance

and avoid the calculus of Jacobian matrices.

B. Human Models

Modelling human motion is a difficult task because most of

the time people’s behaviours are unpredictable. Many appli-

cations for human tracking are based on a simple Brownian

model [5], but to handle occlusions a constant velocity model

is a better choice [4], [6]. The following model extends the

latter case including two novelties:

• the estimation of the human height zh;

• the assumption that the velocity vh is always positive.

The estimation of zh is possible thanks to our face detection

system, knowing also the tilt of the camera and its height from

the ground. The human height adds a third dimension to the

tracking space and this is particularly useful for distinguishing

and assigning the correct track to different persons (data

association), rather than improving the performances of the

tracking itself. Instead, the assumption that vh is always

positive takes into account the fact that a person, when is

walking, is normally heading forward. This is a plausible

constraint that permits the correct estimation of the human

orientation, which otherwise could be subjected to an error

of 180◦ (i.e. the person is walking backward). Of course, the
orientation can be estimated only when the human target is

moving (vh not null). In addition to zh and vh, the model

below includes then the 2D position
(
xh, yh

)
of the human

and the orientation φh:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xh
k = xh

k−1
+ vh

k−1
· Δtk · cos φh

k−1

yh
k = yh

k−1
+ vh

k−1
· Δtk · sinφh

k−1

zh
k = zh

k−1

φh
k = φh

k−1

vh
k =

∣∣vh
k−1

∣∣
(16)

where Δtk = tk−tk−1 is the time interval. Errors are modeled

as additive zero-mean Gaussian noises and are omitted here

for simplicity.

Differently from the previous ones, the human observation

model is quite complex. The available measurements, coming

from the face and legs detection, are bearing bf
m and elevation

ef
m of the human face, plus bearing bl and range rl of the

legs. Of course these observations depend on the position

and orientation of the robot and its camera, therefore the

model includes the following values: 2D position (xr, yr) and
orientation φr of the robot given by the odometry, plus pan ψr

and tilt θr of the camera. To complicate things is the fact that

camera and laser are not aligned with the robot central axis,

therefore their displacement must also be taken into account

with the following transformations:

cx0 = xr + cx · cos φr cy0
= yr + cx · sin φr

lx0 = xr + lx · cos φr ly0
= yr + lx · sinφr

(17)

where cx and lx are the distances of camera and laser from
the robot’s centre, lying on its longitudinal axis (cy and ly are
both null). Given also the height cz of the camera from the

ground, the whole observation model is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bf
k = arctan

yh
k − cy0

xh
k − cx0

− φr
k − ψr

k

ef
k = − arctan

zh
k − cz√(

xh
k − cx0

)2
+

(
yh

k − cy0

)2
− θr

k

bl
k = arctan

yh
k − ly0

xh
k − lx0

− φr
k

rl
k =

√(
xh

k − lx0

)2
+

(
yh

k − ly0

)2

(18)

The two models above (16) and (18) are respectively the

practical implementations of the systems f(·) and h(·) in
(1), from which we derive the necessary equations for the

UKF. Please note also that the innovation is always normalized

between [−180◦, 180◦) for all the angular components of the
observation vector in order to avoid the divergence of the filter.

IV. DATA ASSOCIATION

In order to perform multiple tracking, each reading coming

from the sensors must be correctly assigned to the proper

human. A general scheme of data association is illustrated

in [13] and can be summarized in the following steps: 1)

update the states of the candidate tracks to the observation

time and compute the predicted observations; 2) remove real

observations which cannot match any track (gating); 3) form

and association matrix of similarities between each pair of
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real/predicted observations; 4) assign the current real obser-

vations to the proper tracks. The whole process is described

below.

At time k, the set of measurements Yk contains the follow-

ing elements (hereafter we omit the subscript k, being clear
the time step is always the same):

yf
m =

[
bf
m

ef
m

]
yl

n =

[
bl
n

rl
n

]
(19)

where yf
m includes bearing and elevation of the mth face,

while yl
n includes bearing and range of the nth legs pair.

The first action is to update the candidate tracks to the

current time step. This correspond to a prediction of the human

states xh
1

−

k . . .xh
H

−

. Then the expected observations z
f
j and zl

j

have to be predicted. Here the current robot and camera’s state

xr have also to be considered, as explained in Section III-B.

We adopt a common gating approach that consists in

excluding all the measurements yi outside a validation region
[14]. This region, constructed around the predicted observation

zj , is determined by the relation d(yi, zj) ≤ λ, where d is the
Mahalanobis (or statistical) distance defined as follows:

d(yi, zj) =
√

(yi − zj)
T

C−1

ij (yi − zj)

Cij = cov(yi − zj)
(20)

and λ is a threshold. Under the assumption that d2 is χ2

(chi-squared) distributed with n degrees of freedom for an
n-dimensional measurement vector, the value of λ can be
determined from tables of the χ2 distribution. In this case

z
f
j and zl

j are both 2-dimensional, so we choose λ = 3.03
in order to have a probability PG = 0.99 that a measurement
generated by a human target falls inside the validation region.

For each pair of real/predicted observations a similarity

measure is then calculated and used to form an association

matrix. The similarity is given by the same Mahalanobis dis-

tance introduced in (20). We distinguish between observations

relative to faces and legs, generating two different association

matrices as follows:

Sf =

⎡
⎢⎣

sf
11 . . . sf

1H
... · · ·

...

sf
M1

. . . sf
MH

⎤
⎥⎦ Sl =

⎡
⎢⎣

sl
11 . . . sl

1H
... · · ·

...

sl
N1

. . . sl
NH

⎤
⎥⎦ (21)

where the elements are the similarities given by the following

Mahalanobis distances:

sf
mj = d

(
yf

m, zf
j

)
sl

nj = d
(
yl

n, zl
j

)
(22)

Given the association matrices then, the simplest way to

assign a real measurement to a predicted observation is the

Nearest Neighbour (NN) technique [13], [14], which in prac-

tice consists of choosing the pairs (yi, zj) with the highest
similarities (i.e. lowest sij). Differently from other methods
like JPDA [6] or MHT [7], the NN association is one-to-one,

that is only one measurement is assigned to one prediction at

each update step. This choice seems to be reasonable for most

of the cases where the set of entities to track is not too dense

[2], [5], as shown also in our experiments.

Association Matrix

Human

Observation Model

Human State

Estimator

Data
Assignment

Human

Prediction Model

Human Tracks
Database

Gating &

new tracks

zh
1k . . . zh

Hk

(
yik, z

h
j k

)

S

xh
1
−

k . . .xh
H

−

k

xh
1k . . .xh

Hk

Ykxr
k

xh
1(k−1) . . .x

h
H (k−1)

Fig. 3. Schematic representation of the system, including state es-
timators and data association. The process starts extracting candidates
xh

1 (k−1) . . .xh
H (k−1)

from the target database and assigns to each state the

proper observations from the set Yk . The pairs
`
yik, zh

j k

´
are eventually

used for the correction of the human state estimations.

The laser readings excluded by the gating procedure or

the NN assignment are considered for the generation of new

tracks3. Basically, parallel to the main human tracks database
there is another list containing all the possible candidates. Each

one of these is created by a sequence of readings falling inside

a certain region, which is delimited by the maximum possible

distance covered in the interval Δtk (i.e. maximum human

velocity). Every candidate is assigned a maximum lifetime

during which, after a certain number of readings, in can be

promoted to human track. Instead, if no further readings fall

inside its region, the candidate is removed. Whereas the initial

position, orientation and velocity of a new track can be simply

obtained with the laser, the same is obviously not possible

for the height. Therefore, our approach is to set initially an

“average” height, for example 1.5m, and a flag indicating that
such height is just temporary. As long as this flag is set, the

variance of the relative height is kept very high. When the

face is detected, the flag is unset and the height is normally

updated by the estimator together with its variance.

Another important issue is of course the tracks’ deletion.

First of all, from the human track database we continuously

remove the elements which have not been updated by the

Kalman estimator for more than a certain time. Also, we delete

the tracks which are too close to each other, in order to avoid

multiple tracking of the same human target. In practice, if two

tracks are closer than a certain distance, the track with the

highest covariance is removed.

The whole process is illustrated in Fig. 3. Although the

observation vectors and the association matrix have been

generalized in the figure, we remind that the process is actually

split in two parts: one for the face and another for the

3Actually only laser patterns (a) and (b), explained in Section II-A, are
considered trustful for candidate creation. Face readings are not taken into
account as they cannot provide range information.
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Fig. 4. Robot equipped with laser and PTZ camera for the experiments. The
camera used is the black one on the top, about 1.5m high. The blue device
is the laser, at approximately 0.4m from the floor.

legs detection. Once we have obtained the two sets of pairs(
yf

m, zf
j

)
and

(
yl

n, zl
j

)
, we have to consider that not only they

can differ in size, but also may contain predictions which

refer to different humans. For example, given three people

{A,B,C}, we could have detected only the face of human A
plus the legs of humans B and C. In this case we estimate the
current human state using only “half” observation, y

f
i or y

l
i,

and setting to null the innovation of the missing component.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The robot used for our experiment is a Pioneer platform

equipped with a laser and a PTZ camera, mounted on a proper

support as shown in Fig. 4. The whole software has been

implemented in C++ and runs in real-time on the robot’s on-

board computer, which is a PIII 800MHz. In particular, we
derived the UKF from the Bayes++ library [15] and access to

the hardware through the Player middleware [16]. Finally, the

true position of the people was given by an external video-

based tracking system that makes use of a ceiling mounted

camera, as shown by the snapshot in Fig. 7.

We tested our systems in three different situations: a) with a

single human and the robot moving; b) with several people and

the robot stopped; c) with several people and the robot moving.

The experiments were run in our robotic arena, in a scenario

very challenging for both the face and the legs detection, as

shown in Fig. 5. The observation frequency is approximately

10Hz and the time length of every trial is about 60s. Every
track is created after 3 readings at maximum intervals of 0.5s
and is removed if not updated for more than 1s. The results
are reported in Table I. For each experimental case (A, B, C)

and person (1, 2, 3) we indicate the Root Mean Square Error

(RMSE), plus standard deviation (SD), minimum value and

maximum value of the error.

A. Tracking a Single Human

In this experiment we evaluated the performance of the

tracking system’s accuracy when a person and the robot are

both moving. The relative paths are illustrated in Fig 6 and

the results in Table I (case A). We can see that the RMSE

Fig. 5. A view of the experiments scenario, as seen by the robot, and a laser
scan that shows the irregularity of the environment. The orange line on the
laser scan indicates the detected legs.

is relatively small, despite the fact that the robot was almost

always moving and turning. In some cases, when the robot

was not facing to the human for more than 1s, the track was
lost; as soon as the robot could detect the person again, a new

track was promptly recreated. Please note that the RMSE could

be further reduced just decreasing the threshold of maximum

time loss, for example from 1s to 0.5s, but this of course would
reduce also our capability to predict the human position in case

of clutters.

B. Tracking People from a Fixed Position

The complexity of the task increased considerably with the

presence of more persons. Indeed, the three people involved

in the experiment often crossed and sometimes touched each

other, so there were many situations in which a person covered

another one or they were so close to be confused as a single

entity. It is clear then that for this experiment the performance

of the data association is crucial. From the results in Table

I (case B) we can see that the tracking was still accurate

enough to be compared to the previous single-human case.

We have to note however that a couple of times the data

Fig. 6. Paths of the robot (thick line) during the tracking of a single human
(dashed line). The circles indicate their starting points and the rectangle is a
2m high wooden wall.
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Fig. 7. Image from the ceiling camera. Each target wears a color marker for
absolute position tracking. The robot (on the left) has two markers to retrieve
its orientation. Here the two human targets on the bottom of the image are
very close to each other and the laser cannot distinguish their legs.

TABLE I

TRACKING ERROR

Case Person RMSE [m] SD [m] Min [m] Max [m]

A (1) 0.26 0.13 0.01 0.64

(1) 0.22 0.11 0.03 0.42

B (2) 0.29 0.16 0.07 1.08

(3) 0.31 0.15 0.05 1.07

(1) 0.40 0.28 0.03 2.83

C (2) 0.29 0.14 0.03 0.90

(3) 0.27 0.09 0.07 0.42

association failed and the track originally generated for one

person switched to a different one. These cases happened when

the two people walked very close, out of the camera’s field

of view, and the laser data was not enough to distinguish the

two different pairs of legs, like the situation illustrated in Fig.

7. Such errors could be probably reduced pointing the camera

torwards targets which are moving very close to each other,

trying to spot faces or other features: this is a possible solution

we are currently investigating.

C. Tracking People while Moving

The last experiment was performed moving the robot in

the environment with the same people wandering around. The

results in Table I (case C) show the tracking error was still low

and comparable to the previous cases. Like before, there have

been a few data association errors. This is the main reason,

for example, of the big maximum error in case C-(1), caused

by a track which has been generated by person (1) and then

updated with some incorrect readings not belonging to him.

It seems instead that the robot’s motion does not influence

much the performance of the tracking, even in the worst case

when the robot is turning around. We are pretty confident this

will be also demonstrated with future experiments in a bigger

environment.

VI. CONCLUSION AND FUTURE WORK

The work described in this paper illustrates a system for

tracking multiple humans with a mobile robot. Differently

from other solutions, we do not rely only on one device,

that is camera or laser, but we perform data fusion in order

to integrate the information provided by both of them. An

implementation of the UKF for human state estimation has

been proposed, together with data association and maintenance

of multiple tracks. The system has been tested experimentally

and considerations drawn from the results, showing the good

performance of our solution.

We are currently improving our system to include the

uncertainty of the robot motion in the human state estimation.

We are also extending it in order to perform, in real-time,

concurrent people tracking and recognition.

REFERENCES

[1] D. Beymer and K. Konolige, “Real-time tracking of multiple
people using continous detection,” in Proc. of the Int. Conf.
on Computer Vision, Kerkyra, Greece, 1999. [Online]. Available:
http://www.ai.sri.com/∼beymer/vsam/index.html

[2] M. Bennewitz, G. Cielniak, and W. Burgard, “Utilizing learned motion
patterns to robustly track persons,” in Proc. of Joint IEEE Int. Workshop
on VS-PETS, Nice, France, 2003, pp. 102–109.

[3] M. Lindström and J.-O. Eklundh, “Detecting and tracking moving
objects from a mobile platform using a laser range scanner,” in Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 3,
Maui, HI, USA, 2001, pp. 1364–1369.

[4] D. Beymer and K. Konolige, “Tracking people from a mobile
platform,” in Proc. of IJCAI-2001 Workshop on Reasoning with
Uncertainty in Robotics, Seattle, WA, USA, 2001. [Online]. Available:
http://www.aass.oru.se/Agora/RUR01/proceedings.html

[5] M. Montemerlo, W. Whittaker, and S. Thrun, “Conditional particle filters
for simultaneous mobile robot localization and people-tracking,” in Proc.
of IEEE Int. Conf. on Robotics and Automation (ICRA), Washington DC,
USA, 2002, pp. 695–701.

[6] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers, “People tracking
with mobile robots using sample-based joint probabilistic data associa-
tion filters.” Int. Journal of Robotic Research, vol. 22, no. 2, pp. 99–116,
2003.

[7] J. Bobruk and D. Austin, “Laser motion detection and hypothesis
tracking from a mobile platform,” in Proc. of the 2004 Australian
Conference on Robotics & Automation, Canberra, Australia, 2004.
[Online]. Available: http://www.araa.asn.au/acra/acra2004/

[8] N. Bellotto and H. Hu, “Multisensor integration for human-robot
interaction,” The IEEE Journal of Intelligent Cybernetic Systems, vol. 1,
July 2005. [Online]. Available: http://www.cybernetic.org.uk/ics

[9] R. Lienhart and J. Maydt, “An extended set of haar-like features for
rapid object detection,” in Proc. the IEEE Int. Conf. on Image Processing
2002, vol. 1, New York, USA, 2002, pp. 900–903.

[10] G. Welch and G. Bishop, “An introduction to the kalman filter,”
University of North Carolina at Chapel Hill, Department of Computer
Science, Tech. Rep. TR 95-041, 2004.

[11] S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to
nonlinear systems,” in Proc. of SPIE AeroSense Symposium, FL, USA,
1997. [Online]. Available: http://www.cs.unc.edu/∼welch/kalman/

[12] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new method
for the nonlinear transformation of means and covariances in filters and
estimators,” IEEE Trans. on Automatic Control, vol. 45, no. 3, pp. 477–
482, March 2000.

[13] D. L. Hall, Mathematical Techniques in Multisensor Data Fusion.
Artech House, 1992.

[14] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Princi-
ples and Techniques. Y. Bar-Shalom, 1995, vol. 3.

[15] M. Stevens, “Bayes++ the Bayesian Filtering Library.” [Online].
Available: http://bayesclasses.sourceforge.net/Bayes++.html

[16] B. Gerkey, R. Vaughan, A. Howard, and N. Koenig, “The Player/Stage
Project.” [Online]. Available: http://playerstage.sourceforge.net/

12



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


