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ABSTRACT
People tracking is an essential part for modern service
robots. In this paper we compare three different Bayesian
estimators to perform such task: Extended Kalman Filter
(EKF), Unscented Kalman Filter (UKF) and Sampling Im-
portance Resampling (SIR) Particle Filter. We give a brief
explanation of each technique and describe the system im-
plemented to perform people tracking with a mobile robot
using sensor fusion. Finally, we report several experiments
where the three filters are compared in terms of accuracy
and robustness. In particular we show that, for this kind
of applications, the UKF can perform as well as a particle
filter but at a much lower computational cost.
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1 Introduction

People tracking has become an essential skill modern ser-
vice robots have to be provided with. Since they are sup-
posed to operate in human environments and share the nav-
igation space with normal people, robots have to be able to
detect and track them in a fast and reliable way.

This is the case for service robots used in exhibitions
and public places to entertain visitors and provide them
with useful information. An example is the tour-guide
robot of [1], which makes use of a laser-based tracking
system to interact with people and create maps of the en-
vironment discarding human occlusions. Another impor-
tant field of application is automatic or remote surveillance
with security robots [2], which can be used to monitor wide
areas of interest otherwise difficult to cover with fixed sen-
sors. These robots have to able to detect and track people
in restricted zones, for example to signal the presence of
intruders to the security personnel.

People tracking is particularly challenging if we want
to achieve the full autonomy of a robot without the use of
external sensors or computers, in order to be independent
from the current working place. This becomes even more
difficult if the hardware resources are limited, which often
happens, for example, in robots for surveillance applica-
tions. Hence the software design of the tracking system
has to consider carefully the computational efficiency.

In this paper we compare different Bayesian estima-
tors to perform people tracking using a fully autonomous
mobile robot operating in a typical office environment. We
consider three classic approaches: Extended Kalman Filter
(EKF), Unscented Kalman Filter (UKF) and Sampling Im-
portance Resampling (SIR) particle filter. All of them have
been somehow applied for people tracking with robots.

In the work of [3] the EKF has been used to track a
person with a mobile robot using stereo vision. Laser and
visual data, instead, have been integrated in [4] using the
UKF and sensor fusion techniques to perform people track-
ing. Other approaches are based instead on particle filters,
sometimes using only one sensor [2], and other times com-
bining more [5].

The choice of the best filter to use depends on sev-
eral factors, among which the following important ones:
linearity/non-linearity of the system, probability distribu-
tion of the uncertainty and, last but not least, computational
efficiency. In the following sections we present a solution
to the tracking problem that integrates legs and face detec-
tion, which are obtained respectively from the laser and the
camera of a mobile robot. Analysing accuracy and robust-
ness of the people tracking, we show that the UKF not only
performs better than the EKF, but also that, for this task,
it can be a valid alternative to particle filters, in particular
when the hardware resources are limited and the computa-
tional efficiency is a key issue.

The paper is organized as follows. Section 2 intro-
duces Bayes estimators and describes briefly EKF, UKF
and SIR particle filter. An implementation of people track-
ing for a mobile robot is then illustrated in Section 3. Sev-
eral experiments are described in Section 4 to compare the
performance of the different estimators considered. Finally,
conclusions and future work are reported in Section 5.

2 Recursive Bayesian Estimation

The most popular methods for dynamic state estimation be-
long to the family of recursive Bayesian estimators, which
include Kalman filters [6, 7] and sequential Monte Carlo
estimators [8], also known as particle filters.

In general, for a tracking application, the target state
evolves according to the following discrete-time model:

xk = f(xk−1,wk−1) (1)



where xk is the state vector at the current time step k and
wk−1 is white noise. The relative observations are nor-
mally described by another model as follows:

zk = h(xk) + vk (2)

where zk is the observation vector and vk is also white
noise, mutually independent from wk−1. In general, f and
h are non-linear functions.

Given a set of observations Zk , {zi, i = 1, . . . , k},
the prior probability density p(xk|Zk−1) can be expressed
as follows:

p(xk|Zk−1) =

∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (3)

where the transitional density p(xk|xk−1) is defined by (1).
From (3), using the Bayes’ rule, the posterior density can
be calculated with the following equation:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
(4)

where the denominator is a normalization factor:

p(zk|Zk−1) =

∫

p(zk|xk)p(xk|Zk−1)dxk (5)

and the likelihood p(zk|xk) depends on (2).
Equations (3) and (4) are, respectively, the prediction

and correction (or update) stages of a recursive Bayesian
estimator. At each time step, the estimation usually consists
in calculating the Minimum Mean-Square Error (MMSE)
estimate x̂MMSE

k|k , E{xk|Zk}.

2.1 Extended Kalman Filter

Although originally not formulated as such, the Kalman fil-
ter belongs to the general class of Bayesian estimators and
is known to be optimal for a restricted class of linear sys-
tems with Gaussian noises. However, good performances
can be still obtained for a non-linear system, if this is suffi-
ciently described by a linear approximation, using the EKF.

First of all, at each time step, the partial derivative
elements of the Jacobians Fk, Wk and Hk have to be cal-
culated as follows [6]:

F
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∂fi

∂xj

(x̂k−1, 0) W
(i,j)
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∂fi

∂wj
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∂hl

∂xj

(x̂−
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The prediction is done calculating the a priori esti-
mate x̂−

k and the error covariance P−
k :

x̂−
k = f(x̂k−1, 0) (7)

P−
k = FkPk−1F

T
k + WkQk−1W

T
k (8)

where Qk−1 is the covariance matrix of the state noise.

Given also the covariance matrix Rk of the observa-
tion noise, the correction procedure then computes and uses
the Kalman gain Kk to calculate the a posteriori estimate
x̂k and the error covariance Pk as follows:

Kk = P−
k HT

k S−1
k (9)

x̂k = x̂−
k + Kk (zk − ẑk) (10)

Pk = P−
k − KkSkK

T
k (11)

where Sk = HkP
−
k HT

k +Rk and the term (zk − ẑk), with
ẑk = h(x̂−

k ), is the difference between real and predicted
measurement, also called innovation.

2.2 Unscented Kalman Filter

In the UKF, the first-order linearization of the EKF is sub-
stituted with an Unscented Transformation (UT), which
captures mean and covariance of the probability distribu-
tions with carefully chosen weighted points (sigma points).

Given the state estimate x̂, of size n, and the error
covariance P, the 2n + 1 sigma points XXX i and associated
weights Wi of the UT are calculated as follows [7]:

XXX 0=x̂ W0=β/(n+β)

XXX i=x̂+
(

√

(n+β)P
)

i
Wi=[2 (n+β)]−1

XXX i+n=x̂−
(

√

(n+β)P
)

i
Wi+n=[2 (n+β)]−1

(12)

where i = 1, . . . , n and β is a parameter for tuning the
higher order moments of the approximation (n+β = 3 for
Gaussian distributions). The term

(

√

(n+ β)P
)

i
is the

ith column or row of the matrix square root of P.
The estimation with the UKF can be done as follows.

First of all, the state is augmented to include the process
noise, then the relative sigma points are generated, from
the previous estimate x̂k−1, using (12). The a priori mean
x̂−

k and covariance P−
k are predicted with the UT:

XXX−
i k

= f(XXX ik−1) for i = 0, . . . , 2n (13)

x̂−
k =

2n
∑

i=0

WiXXX
−
i k

(14)

P−
k =

2n
∑

i=0

Wi

[

XXX−
i k

− x̂−
k

] [

XXX−
i k

− x̂−
k

]T (15)

Using the observation model and the new sigma
points in (13), the expected measurement is also calculated:

ZZZik = h(XXX−
i k

) for i = 0, . . . , 2n (16)

ẑk =
2n
∑

i=0

WiZZZik (17)

The innovation covariance Sk and the cross-
correlation Ck are then computed as follows:

Sk = Rk +

2n
∑

i=0

Wi [ZZZik − ẑk] [ZZZik − ẑk]
T (18)



Ck =

2n
∑

i=0

Wi

[

XXX−
i k

− x̂−
k

]

[ZZZik − ẑk]
T (19)

The a posteriori estimate x̂k and covariance Pk are
finally given by the same (10) and (11) of the EKF using
the gain calculated as follows:

Kk = CkS
−1
k (20)

2.3 SIR Particle Filter

Particle filters are practical implementations of recursive
Bayesian estimators using Monte Carlo simulations [8].
The major advantage of such filters is that they can be ap-
plied both to linear and non-linear systems with any proba-
bility distribution.

In a general particle filter, the posterior of the state (4)
can be approximated by the following weighted sum:

p(xk|Zk) ≈

N
∑

i=1

wi
kδ(xk − xi

k) (21)

where the samples xi
k are drawn from the importance den-

sity q(xi
k|x

i
k−1, zk) and the weights are calculated as fol-

lows:
wi

k ∝ wi
k−1

p(zk|x
i
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
k−1, zk)

(22)

For N → ∞, the approximation (21) tends to the true pos-
terior p(xk|Zk).

The most popular implementation of particle filter is
the SIR (or Boostrap) filter [8]. The chosen importance
density, in this case, is the transitional prior:

q(xk|x
i
k−1, zk) = p(xk|x

i
k−1) (23)

which depends on the state model. The weights are simply
given by the current measurement likelihood:

wi
k ∝ p(zk|x

i
k) (24)

At the end of each iteration, the SIR algorithm performs a
resample step that eliminates the particles with very small
weights and then generates new ones, equally weighted,
from the remaining samples.

The prediction of the SIR filter consists in generating
new particles, from the previous ones, using (1) and sam-
ples drawn from the pdf of the state noise. Then, as soon
as a new measurement is available, the update is performed
calculating the weights (24), where the likelihood depends
on the observation model (2), and deriving the approxi-
mated posterior (21). The particles are finally resampled
for the next iteration. See [8] for a detailed explanation.

3 People Tracking

3.1 Human Detection

Most of the mobile robots performing people tracking are
equipped with cameras or laser range sensors to detect hu-
mans [4, 5, 9]. We use both the devices and, as in other

similar approaches, we detect legs with the laser and faces
with the camera.

For the legs, instead of looking simply for local min-
ima in the laser scans or applying motion detection tech-
niques [9, 5], we use the detection algorithm described in
[10]. This is based on the recognition of typical legs pat-
terns, corresponding to three possible postures: legs apart,
forward straddle and two legs together (or single leg). The
method is quite robust, even in cluttered environments, and
computationally inexpensive.

The face detection is based on the real-time solution
of [11], which uses a cascade of classifiers to extract simple
but critical visual features. This algorithm is color indepen-
dent and quite robust to different light conditions. From the
position inside the image, the direction of the face is calcu-
lated with simple geometric transformations [10].

3.2 State and Observation Models

For the prediction of the human motion, we adopt an ex-
tension of the constant velocity model, where the state in-
cludes position (xk, yk), height zk, orientation φk and ve-
locity vk of the human target [4]:























xk = xk−1 + vk−1δk cosφk−1

yk = yk−1 + vk−1δk sinφk−1

zk = zk−1 + nz
k−1

φk = φk−1 + nφ
k−1

vk = |vk−1| + nv
k−1

(25)

with δk = tk − tk−1. The noises nz
k−1, nφ

k−1 and nv
k−1 are

zero-mean Gaussians with σz = 0.01m, σφ = π
6 rad and

σv = 0.1m/s.
The observation model of the legs detection takes

into account the current position of the robot (xR
k , y

R
k , φ

R
k ),

given by the odometry, and includes the bearing bk and the
distance rk of the detected legs:















bk = tan−1

(

yk − yl
k

xk − xl
k

)

− φR
k + nb

k

rk =

√

(

xk − xl
k

)2
+
(

yk − yl
k

)2
+ nr

k

(26)

where (xl
k, y

l
k) is the absolute position of the laser device

(also depending on the odometry). The noises nb
k and nr

k

are zero-mean Gaussian with σb = π
60 rad and σr = 0.1m.

The model of the face detection takes into account the
current pan ψc

k, tilt θc
k and absolute position (xc

k, y
c
k, z

c
k) of

the camera, in order to get bearing αk and elevation βk of
the face, plus elevation γk of the chin:

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(27)



The costant µ in the third member of (27) is chosen so that
the product µzk corresponds approximately to the height
of the the chin, which is also given by the face detection.
Again, the noises nα

k , nβ
k and nγ

k are zero-mean Gaussians
with σα = σβ = π

45 rad and σγ = π
30 rad.

3.3 Data Association and Tracks Creation

We adopt Nearest Neighbour (NN) data association to han-
dle multiple targets [12]. This is a reasonable compromise
between performance and computational cost, which gives
good results in most of the cases where the set of entities to
track is not too dense [4, 13].

False readings are excluded using a validation gate
[12] and the following similarity measure is used for the
creation of the association matrices [14]:

d =
1

(2π)
m

2

√

|S|
exp

(

−
dM

2

)

(28)

where m is the size of the observation vector, S is the
covariance matrix of the innovation and dM is the Maha-
lanobis distance between real and predicted measurement.

The sensor readings, when discarded by the gating or
the assignment procedure, are used to create new candidate
tracks. We mainly consider sequences of adjacent legs de-
tections, since faces do not provide distance information.
However, the latter can contribute at the creation of new
tracks if the current legs pattern is not reliable enough (e.g.
single leg case). The procedure is better described in [10].
A track is eventually deleted from the database if not up-
dated for more than a certain time or if the uncertainty of
its position is too high.

4 Experimental Results
The performances of the three different filters used for peo-
ple tracking have been tested with several experiments in a
typical office environment using a Pioneer 2 robot (see Fig.
1). This is equipped with a SICK laser and a PTZ camera
mounted on a special support. The embedded PC is a Pen-
tium III 850MHz 128MB, running Linux OS. The software
is written in C++ making use of the optimized Bayes++ li-
brary1 for the estimation part. Images from the camera are
provided at 10fps, while the frequency of the laser scans is
5Hz. The latter sets also the maximum update speed of the
tracking software when running in real-time on the robot.
This value can decrease depending also on the execution
time of the particular estimator adopted.

The following paragraphs describes the comparison
of EKF, UKF and SIR filter. The latter has been tested with
500 samples, which we found to be the minimum number
of particles needed for a correct human tracking, and 1000
samples, closer to the quantity normally used by other re-
searchers [5, 9]. The experiments show accuracy and ro-
bustness of the different methods.

1http://bayesclasses.sourceforge.net/Bayes++.html

(a) Mobile robot. (b) Floor plan.

Figure 1. Robot and experiments location.

Table 1. Tracking Error for One Person

EKF UKF SIR(500) SIR(1000)

RMSE [m] 0.31 0.24 0.23 0.23
Mean [m] 0.24 0.20 0.19 0.19
SD [m] 0.20 0.13 0.13 0.13
Max [m] 1.49 0.97 1.13 1.10

4.1 Tracking Accuracy

To measure the error of the estimators, we utilized the ab-
solute tracking system of our robot arena, which makes use
of a camera mounted on the ceiling and calibrated to get the
ground truth position of the robot and the people. All the
data, including those from the robot’s sensors, have been
recorded to perform an off-line comparison of the filters.
Fig. 2 shows an example of people being tracked from both
the ceiling camera and the robot.

In the first experiment one person was walking ran-
domly around the robot for about 60s, while this was mov-
ing approximately at 0.4m/s following a square path. The
accuracy of the tracking is shown in Table 1, which reports
RMSE, mean, standard deviation and maximum error using
different estimators. As can be seen, the performances of
the two SIR filters, which are of course better than the EKF,
are almost identical, despite the higher number of particles.
But what is more important is the fact that, basically, the
UKF performs as well as the particle filters for this task.

Similar results have been obtained also in some other
experiments with three persons being tracked by the robot
when stationary or moving. One of these is illustrated in
Fig. 3 with the paths of the robot and the people walking
around it. The relative tracking errors are reported in Ta-
ble 2 and show again that the accuracy of the UKF, when
applied to people tracking, is similar to the SIR filter.

Please note that, while the EKF and UKF were very
fast, the SIR filters could not run in real-time on the robot
because, with just 500 particles and three people, the esti-
mation time was close to the period of a laser scan (200ms).
Since other tasks had to be executed (e.g. image process-
ing), the SIR could not process the sensor information as
fast as it should and was not be able to track properly.



(a) Ceiling camera view. Each target has a color marker
(one more for the robot to get its orientation).

(b) Case of occlusion, as seen by the robot. Target A is
passing in front of target B while the robot R is turning.

Figure 2. People tracking from ceiling camera and robot.

4.2 Tracking Robustness

Besides accuracy, another important characteristic of a
tracking system is its robustness. To evaluate this, we con-
sidered the following parameters: total number of created
tracks, sum of all their durations and total errors. The val-
ues are given in Table 3 for the previous case of three per-
sons being tracked (the one-person case is omitted since al-
ways correct and basically identical for all the estimators).

As expected, the EKF performs worse than the other
filters. The non-linearity of the system, indeed, was the
cause of several track losses, from which derives the largest

Table 2. Tracking Error for Three Persons

EKF UKF SIR(500) SIR(1000)

A 0.50 0.21 0.22 0.20
RMSE [m] B 0.34 0.25 0.24 0.23

C 0.29 0.26 0.25 0.25
A 0.33 0.19 0.20 0.18

Mean [m] B 0.26 0.21 0.20 0.19
C 0.26 0.24 0.23 0.23
A 0.38 0.09 0.08 0.09

SD [m] B 0.22 0.15 0.12 0.12
C 0.14 0.11 0.12 0.11
A 1.98 0.70 0.59 0.65

Max [m] B 1.04 0.87 0.62 0.57
C 0.49 0.46 0.55 0.45

Figure 3. Paths of robot (thick line) and three persons: A
(thin line), B (thin dashed line) and C (thick dashed line).

Table 3. Tracking Robustness for Three Persons

EKF UKF SIR(500) SIR(1000)

Total Tracks 11 7 7 7
Total Time [s] 60.23 65.03 64.72 64.58
Total Errors 2 0 0 0

number of generated tracks with the lowest tracking time.
Also, two of these tracks were erroneously associated

to other targets in proximity of the original ones. With the
UKF and the SIR filters, instead, the estimates were always
correct, even in case of short occlusions. For example, Fig.
2 shows a situation where the robot was turning and a per-
son, walking in front of it, was occluding another one. Even
in this case, where the EKF failed, the UKF performed cor-
rectly, behaving exactly as the SIR filters.

Additional experiments have been carried out in more
challenging situations, where the robot had to track one or
more persons between different rooms. We report here a
case were the robot followed a person starting from the of-
fice in Fig. 1(b), moving along a corridor at normal walk-
ing speed, crossing our laboratory and finally reaching the
arena used for the previous experiments. The length of the
path was approximately 20m, covered in about one minute,
and included door passages and sharp turns.

Although almost always detected by the robot sen-
sors, the EKF failed the tracking three times, as reported
in Fig. 4. Instead, the UKF kept continuously the track
until the final destination, behaving as good as the particle
filters. This is shown for the same three instants in Fig. 5.

5 Conclusions and Future Work

This paper introduced a solution to people tracking with a
mobile robot fusing the information provided by a camera
and a laser device. We focused in particular on the compar-
ison of three classic Bayesian estimators, EKF, UKF and
SIR particle filter, using several experiments to test the per-
formance of each one.

The results show that, for this specific task, an ap-



(a) First tracking error of the EKF in the corridor.

(b) Second error while entering the laboratory.

(c) Third error moving towards the arena.

Figure 4. Three error cases with a person followed and
being tracked using the EKF.

proach based on the UKF can work as well as a particle fil-
ter in terms of accuracy and robustness. The UKF could be
therefore a better alternative in case the computational re-
sources are limited, which often happens with autonomous
mobile robots, but also in case the estimation needs to be
fast enough to allow the execution of other tasks.

In the future, we would like to the extend the com-
parison including more recent and efficient particle filters.
Finally, we plan to implement a real-time solution for si-
multaneous people tracking and recognition with a mobile
robot, integrating also navigation and communication skills
to perform human-robot interactions.
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