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Abstract— Tracking and recognizing people are essential skills
modern service robots have to be provided with. The two
tasks are generally performed independently, using ad-hoc
solutions that first estimate the location of humans and then
proceed with their identification. The solution presented in
this paper, instead, is a general framework for tracking and
recognizing people simultaneously with a mobile robot, where
the estimates of the human location and identity are fused
using probabilistic techniques. Our approach takes inspiration
from recent implementations of joint tracking and classification,
where the considered targets are mainly vehicles and aircrafts in
military and civilian applications. We illustrate how people can
be robustly tracked and recognized with a service robot using
an improved histogram-based detection and multisensor data
fusion. Some experiments in real challenging scenarios show the
good performance of our solution.

Index Terms— People Tracking and Identification, Histogram-
based Detection, Multisensor Data Fusion, Service Robotics.

I. INTRODUCTION

The important developments of the last years in the robotic
field are very encouraging and make us believe that the day
when service robots will populate our lives is not too far.
Since these will be placed in our environment, the study of
the so called Human-Centred Robotics becomes essential for
a synergistic cooperation between men and intelligent robots.

One of the first skills necessary for service robots is the
ability to track and recognize people in the surrounding.
This is essential for a mobile robot to perform some simple
tasks, like following a person in a crowded environment, and
more complicated behaviours, such as locating and identifying
people to interact with. Many real applications can be found
in literature where people tracking and recognition with a
mobile robot play an important role. This is the case for
example of the system described in [1], which uses a thermal
and a normal camera to detect, track and recognize a person
with a security robot. There is also a diffuse interest towards
applications in public places for entertainment purposes, like
the tour-guide robot presented in [2] that tracks visitors
using two laser-range finders. In the new research area of
socially assistive robotics [3], human tracking and recognition
is also necessary for a robot to maintain an appropriate spatial
distance from people and to engage in social interactions
depending on their identity.

Vision-based tracking systems have shown to work well
in simple situations where the direction of human targets is
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sufficient to accomplish the robot’s task, or where the subject
being tracked is a single person [4, 5]. However, in most
of the cases, an accurate estimation of the targets location is
necessary, for example if the robot has to keep a fixed distance
from a moving person or interact with several people sparse in
the environment. In situations like these, good performances
can be achieved using multisensor data fusion, so to increase
the detection range of the robot and, at the same time, reduce
the uncertainty due to sensor data inaccuracy. Recent works
report for example the integration of laser range finders with
a unidirectional or omnidirectional cameras [6, 7].

Very often, however, tracking people is not enough for an
interacting service robot. For example, if the latter works as
receptionist for an exhibit, it would be preferable the robot
welcomes only new visitors and avoids people already met
before. This task requires at least a basic system for human
recognition. The most common solutions are vision-based
and often utilise color histograms to classify people wearing
different clothes [8, 6].

Normally, people tracking and identification are two dis-
tinct processes executed sequentially without sharing infor-
mation. The mutual benefits deriving from the combination
of spatial and identity information have been shown with the
mobile robot application of [4] and the simultaneous face
tracking and recognition of [9].

With regards to the considerations above, two major con-
tributions are given by the current work:

e An improved histogram comparison for human identi-
fication, which is a robust extension of the previous
solution adopted in [6]. The method compares, in real-
time, a template histogram with sub-regions of the image
containing a person’s torso. The best histogram match is
located and used to update the target estimate.

o An original implementation of joint people tracking and
identification for a service robot using multisensor data
fusion. Instead of a general target classification based
on different motion models, our human recognition is
mainly done at observation level using the histogram
information and is completely integrated in the Bayesian
estimation performed with a bank of filters.

The paper is organized as follows. Section II illustrates
the new histogram-based identification. An overview of our
multisensor tracking is given in Section III. Section IV
then explains the solution developed to perform joint people



tracking and identification. Some experiments with a mobile
robot are described in Section V. Finally, the paper terminates
with our conclusions and future work in Section VI.

II. HUMAN IDENTIFICATION

People recognition is performed using color histogram
comparison of the human torso, that is, the color of the
clothes. The method explained in [6], which used a distance
between histograms based on the Bhattacharyyas coefficient,
has been extended and improved so to give a more reliable
measure of similarity and additional input about the loca-
tion of the best match. The information provided by the
new histogram comparison is integrated in the probabilistic
framework of the same Bayesian estimator used for tracking.
Details are given in the following sections.

A. Histogram Comparison

The histogram comparison explained in [6] made use of a
distance based on the Bhattacharyya’s coefficient that showed
to be very discriminative, yet quite robust to different human
poses. The weak point of our first implementation, however,
was the difficulty of selecting the proper image region that
was supposed to contain the human body, in particular when
the robot and/or the person were moving. If this selection was
not accurate, the histogram considered could be completely
different from the real one of the person. Also, such a
distance was measured only with a single comparison of the
whole region’s histogram against that one of reference. In the
approach here illustrated, instead, the distance between color
histograms is calculated in a more robust way.

First of all, from the current image, a region of interest is
selected according to the most recent estimate of the target’s
position and its uncertainty. To do this, we consider the
3D points m = [z,9,2]T and o = [0,,0,,0.]T, given
respectively by the human torso coordinates and their standard
deviations. Chosen a scale factor s, we project then (m— so)
and (m + so) into the image plane, obtaining the relative
pixels (u_,v_) and (u4,v;) that are the corners of the
rectangular region to select. In our experiments, we found
that a scale factor s = 2 guarantees a region sufficiently large
to include always the target’s torso. Fig. 1 shows an example
of region selection.

Then, in a way similar to standard template matching
techniques, the histogram of reference is compared to the
histograms of all the sub-regions (with fixed size) inside
the considered region. Instead of proceeding pixel by pixel,
the sub-regions are selected using wider steps to reduce the
computational cost and perform in real-time. In order also to
limit the influence of light variations, histograms are calcu-
lated in the HSV color space from the Hue and Saturation
components. The result of each comparison between sub-
region and reference’s histogram is stored in a matrix D with
values between 0 and 1, the size of which depends on the
selected region, sub-regions and pixel-step used.

The element d € D with the smallest value is the minimum
histogram distance, and its location inside the matrix indicates
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Fig. 1. Region from where histograms are extracted and then compared to
that one in the database. The number 5, which indicates the record inside the
current database, is centred on the sub-region where the histogram matches
best, namely at the pixel location (uc, vc).

the sub-region of the image where the histogram of reference
matches best. Eventually, the centre (u., v.) of this sub-region
can be used to calculate the direction of the target with respect
to the camera.

B. Clothes Detection

The histogram comparison explained above is the core of
the clothes detection. This is basically giving the direction
of the clothes (color histogram) for a selected subject of the
database. Bearing and elevation are calculated from the sub-
region’s centre (u.,v.) using a pinhole-camera model and
simple geometric transformations, as we already did for the
face detection [6]. The histogram distance is also provided.

At time step k, the observation model of the clothes
detection takes into account the current absolute position
(25,95, 25) of the camera and orientation ¢ of the robot,
as given by the odometry, in order to get bearing «y and
elevation ) of the torso centre, plus the distance dj of the
its color histogram:

e
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The costant x4 in the second member of (1) is chosen so that
the product p zj, corresponds approximately to the height of
the torso centre. The noises ny, n’g and ng are zero-mean
Gaussians with 0, = 0 = g5rad and o4 = 0.3. For the
latter, the assumption of Gaussianity is motivated also by the
empirical results of [10].

This observation model is used by the clothes recognizers
of the Bayesian estimators inside the bank of filters, as
explained in Section IV, so to perform a new correction step
whenever a tracked person is visible by the robot’s camera.



III. MULTISENSOR PEOPLE TRACKING

Most of the recent systems for people tracking rely on
cameras or laser range sensors to detect humans [2, 4, 6, 7].
In our robot, both the devices are used, the first to detect faces
and clothes, the second to find legs. After a data association
step to assign new readings to the proper track, sensory
information is fused using a recursive Bayesian estimation.

A. Legs and Face Detection

Legs are detected from a single laser scan using the same
procedure described in [6]. Briefly, the algorithm recognizes
patterns for three typical legs postures: legs apart, forward
straddle and two legs together (or single leg). The method is
computationally inexpensive and works well even in cluttered
environments.

The face detection is based on the real-time solution of
[11]. With simple geometric transformations, the direction of
the face is calculated from its location inside the image [12].

B. Data Association and Tracks Creation

We adopt Nearest Neighbour (NN) data association to
handle multiple targets [13]. False readings are excluded using
a validation gate and the same similarity measure adopted in
[12] is used for the creation of the association matrices.

Sensor readings discarded by the gating or the assignment
procedure are used to create new candidate tracks. A track is
eventually deleted from the database if not updated for more
than a certain time or if the uncertainty of its position is too
large.

C. State Estimation

For the prediction of the human motion, we adopt an
extension of the constant velocity model, where the state
includes position (x,yx), height zx, orientation ¢ and
velocity v, of the human target. The observation models
of the legs and face detection take into account the current
position of the robot, as provided by odometry. Details are
given in [12].

The estimation can be theoretically performed with any
recursive Bayesian filter. However, for this specific task, the
Unscented Kalman Filter (UKF) and the SIR Particle Filter
(with at least 500 samples) showed to perform particularly
well and give similar results [12]. Using the relative obser-
vation models, the estimation is updated whenever new data
are available from the laser or the camera.

IV. JOINT TRACKING AND IDENTIFICATION

In recent years, the problem of tracking and classifying
targets simultaneously has been studied in particular for
military and civilian applications, where the targets of interest
are mainly vehicles and aircrafts [14, 15]. Out of this context,
for which most of the results are available only in simulation,
only little work has been done for object classification [16],
face recognition [9] or people tracking and identification [17].
These are generally limited to the case of a single target, with
a single sensor or from stationary positions.
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A. Bank of Filters

The optimal solution for joint target tracking and clas-
sification consists of a bank of class-matched filters [14]
characterized by different motion (or prediction) models. At
every time step k, each filter outputs the likelihood i =
p(z1|Zg—1,¢;) of the class ¢;, with Zj, = {z,,}~,_,, which
is used to update recursively the class probabilities as follows:

p(cilZi) o< X, p(cilZi—1) ()

Normally, for Kalman filters, the considered likelihood has a
zero-mean normal distribution [18]:

=N (14;0,8%) 3)

where v, is the innovation term and Sfc the relative covari-
ance. Particle filters, instead, provide a class likelihood that is
implicit in the normalization step of the estimation [14] and
is calculated as follows:

A= @)

where {1}, are the weights of the M samples. If ¢; is the

identity of the target (or some feature that characterizes it), the
system can perform simultaneous tracking and identification.

B. System Architecture

Instead of classifying targets according only to their pre-
diction models, in our system the differentiation is mainly
done at observation level, that is, each filter is updated with a
target-specific input, which gives a “measure” of the target’s
identity. This is implemented using a modular approach where
the “detectors”, used to measure the human position (i.e.
laser-based legs detector, vision-based face detector), are
accompanied by “recognizers”, which measure the similarity
between the current observation and the information stored
in a database (e.g. clothes recognizer, face recognizer, voice
recognizer, etc.). The system is schematically illustrated in
Fig. 2. At each time step, the considered estimate of the
current track is that of the n*" filter for which the identity
probability p(n|z;) is maximal.

The database contains pre-recorded information about
known subjects. In the current implementation, for each per-
son the database contains his height and the color histogram
of his torso. The bank of filters, then, has one estimator for
each subject. With respect to our previous implementation
[12], besides the histogram observation model (1), these filters
differ on the human height component of the prediction
model. In absence of identity information, this was modelled
as zp = 2zp_1+wg_1, where the last term was Gaussian noise.
Since the database now contains height information, the new
model is the following one:

zr = H, +wi_1 5

where H,, is the known height of the n** subject. The concept
is similar to a target classification based on different motion
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Fig. 2. Bank of filters for joint people tracking and identification. Each
filter corresponds to a subject stored in the database.

models, as explained in IV-A, and has a direct influence on
the prediction of the face and clothes observations.

Since the number N of filters (and recognizers) inside a
bank is equal to the number of subjects in the database, its
maximum size depends on the available computational power.
Using UKF, which provides fast and accurate estimations
[12], our system could work in real-time, on a slow PC, with
N = 10 and more. Particle filters and larger databases can be
used with faster hardware.

V. EXPERIMENTAL RESULTS

To test our system, we recorded sensory data using the
mobile robot shown in Fig. 3 and performed several off-line
trials. The robot was remotely controlled to approach some
people and to follow them across different rooms. In the
experiments described next, UKFs were used for the bank of
filters, the good accuracy of which was already shown in our
previous work [12]. The database was created manually and
included information relative to 10 different subjects, each
record containing the height of a person and a histogram of his
torso. Note also that some of the subjects had similar clothes
or height, making the identification even more difficult.

A. Identity Probability

The system was tested in different rooms and with several
people in a typical office environment. To show the perfor-
mance of the human identification while tracking, we report
a case where the robot had to follow and recognize people
in a possible situation for a service robot. The reconstructed
scenario was that of an instructor (person A) introducing the
robot to some other people (B, C and D) located in different
rooms. The action started in an office and continued across a
corridor to reach other people in an adjacent laboratory (see
Fig. 4). The approximate length of the experiment was 70s.

The first two people, A and B, are shown in Fig. 5(a),
together with the relative vision and laser-based detections.
Please note that possible false positives in the legs or face
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Fig. 3. Mobile robot with laser and camera.

ROBOT ARENA

Fig. 4. Plan of the environment used for experiments.

detection did not influence the correctness of the estimation
since they were properly discarded by the gating procedure.
The positional estimates are also illustrated and labelled
according to their probability identities, the evolutions of
which are graphically reported in Fig. 6(a) and 6(b).

From the office, the instructor A moved then to the lab-
oratory, always followed and tracked by the robot, to meet
the other persons C and D, who are shown in Fig. 5(b) and
5(c). Approaching the last one, while temporarily out of the
camera’s field of view, the track associated to A “jumped”
erroneously to the adjacent person D. This is the reason why,
in the last part of Fig. 6(a), the estimated identity switched
from A to D, updating correctly the label of the current track.
The A identity was correctly assigned then to the last track,
as shown by the graph in Fig. 6(d). In practice, the system
is able to promptly recover from possible tracking errors as
soon as visual information is available.

B. Improvement of the Tracking Robustness

Another important feature of the system, that derives from
the integration of the histogram-based identification, is the
robust tracking in challenging situations. There are cases
where people are walking very close and it is difficult to
distinguish them properly using only range information, like
the situation depicted in Fig. 7. Since human motion is very



time: 76.5 s

step: 306

(c) Targets A and D in the laboratory.

Fig. 5. Joint Tracking and Identification. For each figure, the two frames on
the top-left and top-right show respectively the outputs of the face and legs
detection (as seen by the robot). The bottom-left, instead, is the histogram-
based clothes recognition (a different region is selected for each subject of
the database). Finally, the bottom-right frame illustrates the robot R, the track
estimates with their labels and the current probability of the relative identity.
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Fig. 6. Identity probabilities. The start points of the graphs are different

since they are relative to tracks created in different moments. Note that the
identity of the first and the last track swapped soon after the time step 250.

unpredictable, adjacent tracks could often swap and keeping
them fixed to the same targets becomes a hard task.

The sequence illustrated in Fig. 8 shows the different
performance of two single estimators using only legs and face
detection (left column), and the result of the joint tracking and
identification including clothes recognition (right column).
In the first case, the tracks E and F swapped due to their
proximity and current uncertainty of the estimates. In the
second case, instead, the two banks of filters were successfully
updated by the additional information of the clothes detection
modules (bearing, elevation and histogram distance of the
torso), so the tracks were kept on the proper sides.



Fig. 7. Case of adjacent people walking very close to each other. Since they
are not facing the camera, the tracking can rely only on the legs detection
and clothes recognition.

VI. CONCLUSIONS AND FUTURE WORK

The paper presented an improved histogram comparison
for the detection and recognition of human clothes. The
information provided have been integrated in a system de-
signed to perform joint people tracking and identification. A
solution based on a bank of filters, which uses sensor fusion to
combine visual and laser range data, has been illustrated. The
effectiveness and robustness of the tracking and identification
have been tested with several experiments. The results show
the high performance of the system and its strong potential
for service robotics applications.

Further experiments in various conditions, such as colorful
clothes with some patterns, should be also carried out, and
the performance compared with conventional techniques. The
next implementation of our system, which is the first part of
a more complex project for a receptionist robot, will include
face recognition and automatic update of the human database.
This will help to handle the case where people change their
clothes and to distinguish between known and unknown users.
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