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Abstract. Despite the large number of navigation algorithms available
for mobile robots, in many social contexts they often exhibit inopportune
motion behaviours in proximity of people, often with very “unnatural”
movements due to the execution of segmented trajectories or the sud-
den activation of safety mechanisms (e.g., for obstacle avoidance). We
argue that the reason of the problem is not only the difficulty of mod-
elling human behaviours and generating opportune robot control policies,
but also the way human-robot spatial interactions are represented and
implemented. In this paper we propose a new methodology based on
a qualitative representation of spatial interactions, which is both flexi-
ble and compact, adopting the well-defined and coherent formalization
of Qualitative Trajectory Calculus (QTC). We show the potential of a
QTC-based approach to abstract and design complex robot behaviours,
where the desired robot’s motion is represented together with its actual
performance in one coherent approach, focusing on spatial interactions
rather than pure navigation problems.

1 Introduction

In the context of this paper, human-robot spatial interaction (HRSI) is defined as
a set of relative motion events between two or more (possibly coordinated, coop-
erative and/or communicative) agents, which are executed according to partic-
ular social rules, agents objectives and safety constraints. In this paper we focus
particularly on the 2D free-motion case, i.e. the trajectories followed by humans
and robots on a planar space without obstacles, generally associated with the
actions of walking towards something or someone, standing still, moving away,
etc. The interpretation of such motion behaviours, as well as the capability of
performing them in a social context, are essential skills for a mobile robot aiming
at interacting and providing services to humans.

Typically, the trajectories of HRSIs are treated as geometrical relations in
a metric frame, which is often complicated or dependent on specific training
datasets. Such an approach has proven only partially effective so far, preventing
the implementation of more complex and meaningful spatial behaviours. In con-
trast to the majority of existing approaches, we propose a qualitative approach
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to represent and implement HRSIs, which offers the following advantages with
respect to the typical quantitative solutions: it is possible to design and im-
plement social rules of spatial behaviours without necessarily having to learn
them from huge datasets; human-human and human-robot spatial interactions
can be easily mapped into semantic descriptions close to natural language. The
key novelty presented in this paper, founded on our previous work on qualitative
robot control and human behaviour analysis [1I2], is the combination of coarse
and fine QTC representations for a comprehensible ad-hoc definition of HRSIs,
which is both flexible and compact. This approach allows for the rapid design of
complex spatial behaviours with varying resolution of qualitative description.

Numerous solutions for HRSI have been developed in the past. For example,
in [3] the authors developed a geometrical-based algorithm for a mobile robot
to enter a queue of people according to their (static) position and orientation;
in [], a solution to learn typical motion patterns of people in an office environ-
ment was proposed, which was used to estimate the metrical location of a person
tracked across different rooms. Recent works have considered the motion activity
of people in relation to their spatial location, so that a social robot can predict
the position of potential users and approach them more effectively [5]. None of
these approaches, however, take into account the robot’s influence in estimat-
ing and modifying current human trajectories. Among the solutions that have
considered explicitly the effect of a robot’s action on human motion behaviours,
the “social force model” proposed by [@] is often used to provide a quantitative
description of pedestrian behaviours [7]. This model describes human motion
according to forces driven by internal objectives, such as the desire of reaching a
target or avoiding an obstacle, although some recent work suggests the model is
not suitable for dealing with individual pedestrians during evasive manoeuvres
[8]. The authors proposed instead to learn a model of human motion, based on
the principle of maximum entropy, from pedestrian observations. A probabilistic
framework was also proposed in [9] to generate collision-free trajectories with
a robot in dynamic human environments. Differently from others, the last two
solutions take into account mutual human-robot interactions to estimate and
plan joint trajectories. However, all these works are associated with a numerical
representation of the agents position, which might be not the most accessible
approach for programming social behaviours with robots.

A qualitative interpretation of motion activities seems to be a more tractable
way of dealing with HRSI, as shown by relatively simple but effective QTC rep-
resentations implemented in our previous work [I]. There, QTC was adopted as
a formalism for representing and implementing HRSIs. Initial simulation results
using QTC Basic (QTCp) suggested it was possible to abstract simple human
and robot trajectories to generate motion commands based on qualitative terms.
The work in [2] extended the spatial behaviours representation to analyse more
complex trajectories with QTC Double Cross (QTC¢). To this end, however, no
solutions have been implemented that exploit both QTCp and QT C¢ represen-
tations and generate, from real observations, robot control policies within the
same qualitative framework. This is explored by the current research.
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2 The Qualitative Trajectory Calculus

When implementing HRSI behaviour in autonomous robots, the designer is usu-
ally not interested in the exact trajectory of the robot, but rather on how it
qualitatively moves in relation to the human, obeying implemented rules and
conventions. To accommodate that need, we propose a qualitative framework
based on the analysis of relative position and movement direction between two
interacting agents on a 2D environment. In order to reduce the space domain
and focus only on those terms relevant to HRSI, we adopt the well-defined set of
symbols and relations provided by QTC, which is an elegant formalism to deal
with the relative motion of two points in space [10]. QTC belongs to the broad
research area of qualitative spatial representation and reasoning, inheriting some
of its properties and tools [I1I]. There are several versions of QTC, depending
on the number of factors considered (e.g. distance, speed, direction, etc.) and on
the dimensions, or constraints, of the space where the points move.

QTCp represents the relative motion of two points k and [ (Fig. [), with re-
spect to the reference line connecting them, with a 3-tuple of qualitative relations
(a b ¢), where each element can assume any of the values {—,0,+} as follows:

a) movement of k with respect to ! \
— : k is moving towards [ | \
0 : k is stable with respect to [ : Ly »—
+ : k is moving away from [ 8 -
b) movement of | with respect to k T \
as above, swapping k and [ |
¢) relative speed of k with respect to [

— : kis slower than [ Fig. 1. Example of moving points k and
0 : k has the same speed of [ [. The respective QTCp and QTCc rela-
+ : k is faster than [ tions are (—+) and (= + — 0).

Depending on the application, a simplified version of QTCp without the speed
relation can be adopted, considering only the 2-tuple (a b). All the different
combinations and relative motion description for two points are illustrated in
Fig. @l In this case there are 9 (3%) possible states, the transitions of which
can be represented by a Conceptual Neighbourhood Diagram (CND) [10]. In the
QTC framework, a CND restricts the number of legally possible transitions. This
helps to reduce the complexity in building temporal sequence of QTC states.

A variant of QTC¢ extends the previous calculus to specify which side the
two points are moving on, with respect to the reference line connecting them (see
Fig.[d). In addition to the previous relations, the following ones are included:

d) movement of k with respect to k1
— : k is moving to the left side of k [
0 : k is moving along k [ o
+ : k is moving to the right side of k [
e) movement of | with respect to [ k
as above, swapping k and [

QTCc has 81 (3%) states in total and 1088 possible transitions in the relative
CND. It can be combined with QTCp to represent and reason about HRSIs.
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Fig. 2. Graphical representation of QTCp (without speed) and relative CND. Due to
the original formulation [I0], there are no direct transitions in the CND between some
of the states that, at a first glance, appear to be adjacent (e.g. (—0) and (0—)).

3 Application Case Studies

The proposed approach facilitates the design of a variety of HRSIs. Here we
will study two cases that stem from real-world scenarios of robots moving and
interacting with people in public spaces (i.e. to approach potential users or share
narrow passageways) extending and improving our previous models in [TJ2]. The
considered HRSIs are not intended to be comprehensive, but just a means to
more complex robot behaviours. In particular, we consider the scenario in which
a person k and a robot [ are in front of each other, just a few meters away
and without obstacles between them. The robot is programmed to proactively
engage with the person in response to two possible actions: Case I) the person
approaches the robot, but then he/she stops and moves away from it before being
reached; Case II) the person move towards the robot, but then he/she deviates
from the initial trajectory to pass on its left-hand or right-hand side. Both the
situations, illustrated in Fig. Bl terminate with the robot standing still.

3.1 Approach and Withdraw (Case I)

The first scenario refers to the following temporal sequence, which extends a
previous QTCp-based only example discussed in [1]:

(=000)~> (= = 00) ~ (0=) ~ (+=) ~ (+0) (1)

The person initially approaches the robot, triggering the same response on it. A
QTC¢ representation is necessary to specify that the person is moving straight
towards the robot, and not aside of it. The initial state of the sequence is therefore
(—000), which reads “(person) k moves towards (robot) I, while ! stands still;

human robot human > robot

Fig. 3. HRSI in Case I (left) and II (right). The arrows indicate the trajectories of the
agents. The crosses correspond to the locations where the robot stops.
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neither k nor [ moves laterally”. The robot should then approach the person
and stop only when this moves away (see Fig. B]). A command must be issued
to the robot to facilitate the first transition (—000) ~» (——00), as discussed
in Sec. @ In the remaining part of the sequence, the robot moves and stops
regardless of the human (and robot) motion side. A simpler QTCp representation
is therefore sufficient to generate the opportune robot behaviour. In particular,
in the following (0—) state, the robot keeps approaching the person as long as
he/she does not move away. Should that happen, the robot stops, as indicated
by the transition (+—) ~» (+0).

The shift in resolution from a detailed to a coarser QTC representation is
particularly interesting. In reasoning language, this can be formally presented as
follows [10]: there is a change from a fine relation in QCT¢ to a coarse relation in
QTCp; coarse relations are specific unions of fine relations; in this case, the union
of the QT C¢ relations (0—77?) gives the QTCp relation (0—). The possibility to
switch between resolutions is important in order to deal with the computational
complexity arising from the many possible interactions between two or more
moving agents. In the QTC¢ space and relative CND, this is somehow equivalent
to switch between neighbouring subsets. The transitions between QTC¢ subsets
correspond to the transitions between the associated QTCp states, and the
choice between one or the other representation depends on the level of accuracy
required to model the particular spatial interaction.

3.2 Approach and Avoid (Case II)

In the second case, we consider a variant of the scenario discussed in [2], where the
robot followed predefined trajectories to let a person pass in a narrow corridor,
but without reacting to the human movements. Our qualitative approach can
encode the same situation, more flexibly, accommodating the situative behaviour
of the human. The interaction is described by the following temporal sequence,
in which the agents keep the left-hand or right-hand side, following the respective
top or bottom branch after the second state (see also Fig. Bl):

A== =0 (== =)y
(—000) ~ (— — 00) (00) ~= (++) ~ (+0)  (2)

B A0 (=)
The complexity of the manoeuvre, in this case, is reflected by the increased
length of the sequence. It differs from the previous scenarios also by the fact
that the robot, besides executing “towards” and “stop” actions, has to perform
additional “left” and “right” movements, depending on the convention chosen
by the person. These actions are represented in Eq. (2] by the transitions (— —
+0) ~ (——++)and (———0) ~ (————) on the top and bottom branch of
the sequence respectively. In practice, the robot gives way to the person, who has
the priority in deciding which side of the corridor to carry on. Two more robot
commands are generated next, independently of the motion side: one to move
away the robot from the person when they are side-by-side, i.e. (00) ~ (++);
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another one to stop the robot when the person walks away, i.e. (++) ~ (+0).
For this last part of the sequence, a QT Cp representation is sufficient.

It is important to note that, although in the above cases the human always
does “the first move”, it does not imply that the HRSI designer has to specifically
program robot commands in response to particular human actions. With our
qualitative approach, indeed, robot commands “emerge” naturally from the QTC
description of the interaction scenario. One could design HRSIs in which the
robot is the first agent taking the initiative, for example, to prompt some desired
human motion behaviour. The command generation process is transparent from
the designer’s point of view.

4 Implementation

As in a previous work [I], the implemented system consists of three intercommu-
nicating modules: a laser-based people tracker; a high-level reasoner for QTC-
based inference and robot commands; and a control module that converts high-
level commands to low-level instructions for the robot. The last module feeds
a simple motion planning algorithm with obstacle avoidance provided by the
robot’s middleware. In a typical run of the system, the tracking module provides
positions and velocities of the agents (i.e. person and robot) in form of string
messages for the reasoner. The information is converted in QTC relations by the
reasoner and included as new evidence, upon which an inference process is run.
The output is a status message (e.g. a QTC string ‘(—000)’) and, if available,
a command for the robot control module (e.g. ‘moveRight0f (robot,Agent)’).
The tracking and control modules are based on standard algorithms available in
the literature [I2/13]. The high-level reasoner, instead, is based on an inference
engine, which is discussed next.

4.1 QTC Relations

The QTC relations described in Sec.Plare implemented with the logic constructs
of F—Limetteﬂ, an inference engine based on rules that are written in a Prolog-
like language for Fuzzy Metric-Temporal Horn Logic (FMTHL). In particular,
we extended and improved the QTCp implementation in [I] to include also
QTC¢, following the specifications suggested in [14]. The “fuzzyness” is used to
accommodate some of the ambiguities in the qualitative characterization of the
motion properties. It is implemented assigning degree of validities (i.e. functions
of the difference between current speed/orientation and some nominal value) to
QTC relations, which are utilized by F-Limette during the inference process.

4.2 Situation Graph Trees

Knowledge about particular motion behaviours, expressed in terms of QTC se-
quences, is encoded in F-Limette using a schematic representation called Situ-
ation Graph Tree (SGT) and created with a dedicated editor [I5]. During the

! mttp://cogvisys.iaks.uni-karlsruhe.de/Vid-Text/f_limette/


http://cogvisys.iaks.uni-karlsruhe.de/Vid-Text/f_limette/

Qualitative Design and Implementation of Human-Robot Spatial Interactions 337

Layer 0
sit_ED_SITO P
isPresent(Agent)
lnote('STATUS' isPresent(Agent))
1
Layer 1
-
1 1
; ; 2 ) ’
o ; o Sit_ED_SIT4 e ) |
sit_ED_SIT3 D sit_ED_SITL D sit ED SIT2 e o sit_ED_SITS o
moving’ robot)| ot stableWrt(Agent,robot) \gent,robot) gent.robot)
. T ImovingAwayFrom(robot,Agent), .
Agent) (5  Agenti 3] stableWrt(robot,Agent) P gAwayF o 37 stableWrt(robot,Agent)
note('STATUS', (:0)) note('STATUS' (=) note('STATUS'(00)) t “?c‘g;nlmr:;&tl V:: t note('STATUS''(+0)")
g . note('COMMAND', goAwayFrom(robot,Agent)) note( »stop(robot)) I A |
b
\ l\
Layer 2 t \
s e N
1
sit_ED_SIT13 DJ ° sit_ED_SIT7 P )I
St == ° sit_ED_SIT10 e
isAlong(Agent,robot) movingRightOf(Agent,robot) —
isAlong(robot, Agent) 01 isAlong(robot,Agent) S Of(robot,Agent)
note('STATUS',(-000)") °  sit_ED_SIT8 note('STATUS','(—+0)")
. . _ED. note( STATUS' (—++))
note('COMMAND',goTowards(robot,Agent)) EAlnglAsenErobon 2/no!e( COMMAND', goRightOf(robot, Agent))|
isAlong(robot,Agent) f
\ r) 1
[note('STATUS(~00))[3 = g — B
=0 sit_ED_SITO
nnnnn gLeftOf(Agent, robot) e
isAlong(robot,Agent) movingLeftOf( Agent,robor
9 9 P Ofrobot,Agent)|
note('STATUS' (—0)) - —
lnote('COMMAND', goLeftOf(robot,Agent)) note('STATUS, (-—)’)
\. J

Fig. 4. SGT of Case II. Small boxes are situations with QTC relations and associated
actions. Situations are temporally connected to others by thin arrows to form a graph.
Situation graphs at the bottom are specializations of situations at the top.

inference process, the SGT is traversed in a depth-first fashion to find instan-
tiable situations, each one corresponding to a particular QTC state (except the
root, which is used simply to instantiate the presence of a human Agent). When
available in a situation, the action COMMAND of a successful traversal is sent to
the robot controller, enabling the potential instantiation of the next situation.
Details about robot commands using F-Limette and SGTs are discussed in [1J.

Since the SGTs are conceptually similar, we describe only the one relative
to Case II, which is shown in Fig. [@ The nine QTC states of the sequence in
Eq. @) are encoded by the situations in the middle and bottom layer (Layer 1
and 2 respectively) of the SGT. Thin arrows between situations indicate pre-
diction edges, while thick arrows from Layer 1 to Layer 2 point to specializa-
tions, respectively, from QTCp to QTCc. When a new inference process starts,
the SGT traversal tries to instantiate the logic predicates in the first situation
of Layer 1 (i.e. movingTowards (Agent ,robot) and stableWrt (robot,Agent)),
which correspond to the QTCp state (—0). An attempt is also made to sat-
isfy the respective specialization in Layer 2 (i.e. isAlong(Agent,robot) and
isAlong(robot,Agent)), which, combined with the previous, gives the QTC¢
state (—000). If successful, the command goTowards(robot,Agent) is issued,
enabling the following transition (—000) ~» (——00) at the next traversal.

The traversal proceeds with the next situation in Layer 1. Since to the new
QTCp state (——) may have five QTC¢ extensions, according to the sequence in
Eq. (@), the respective specialization in Layer 2 is another temporal graph with
five situations. Note that two of them, (— — +0) and (— — +0), include also the
new robot commands goRightOf (robot,Agent) and goLeft0f (robot,Agent)
respectively. The process continues in a similar way to the next situations.
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Fig. 5. Trajectories of Case I (left) and II (right). The human started on the left
side, the robot on the right side. The grid is 0.5m x 0.5m. [Top left] The person walks
towards the robot, turns back and walks away. [Bottom left] The person walks towards
the robot, turns left and walks away. [Top right] The person walks towards the robot
and passes on its left-hand side. [Bottom right] As before, but on the right-hand side.

5 Experiments

To validate the proposed approach, a set of human trajectories have been col-
lected in an office environment using a laser-based tracking algorithm for mobile
robots [12]. The trajectories, consisting of 2D coordinates and velocities, were
performed according to the descriptions of Case I and II, and used to feed a
real-time robot simulation. The robot was controlled by the system described
in Sec. [ Four trajectory types have been recorded, two for Case I and two for
Case IT (see Fig.[Bl), each one consisting of 10 runs (i.e. 20 trajectories per case).
The robot trajectories in Fig. 5] show that the system performed mostly cor-
rectly, stopping or driving the robot towards the desired direction according to
the planned HRSI. Only in a couple of occasions, during the execution of the
avoid behaviour (Case II), the interaction was unsuccessful, with the robot fail-
ing to stop after passing the human. The errors were caused by the rotation in
place (no translation) of the robot, which unfortunately is not captured by the
current versions of QT'C. The problem is sensitive to the particular robot motion
planner and it should be addressed in future implementations of the system.
To analyse the actual performance of HRSIs, the observed QTC sequences
have been modelled using Markov chains (Fig. [f)), the transition probabilities of
which were derived from the total number of trials per case (i.e. 20). It is in-
teresting to note that, although the behaviours generally followed the expected
ones, in both cases a QTC g state that was not in the original sequence (i.e. (——)
for Case I and (—0) for Case II), enabled the successful completion of the inter-
action replacing missing transitions between other states, mostly QTC¢c. This
evidence further supports the advantage of using hybrid QTC representations.
Real-world case studies have also been carried out with our MetraLabs SCI-
TOS G5 platform using a Sick S300 laser scanner restricted to 180° field of view
to detect the subject’s pair of legs and obstacles. The robot employed DWA
local path planning [13] to implement safe QT'C movement patterns. A subject



Qualitative Design and Implementation of Human-Robot Spatial Interactions 339

0.04

Fig. 6. Markov chains of Case I (left) and II (right). Thicker edges correspond to higher
transition probabilities. Initial and final states are marked, respectively, by continuous
and dashed inner circles. Blue states indicate the robot execution of motion commands.

(—000) (= —+0) (+0)

Fig. 7. Case II with real robot. The robot gives space to the subject shifting on its
right-hand side. This is illustrated also by the QTC states under each snapshot.

was instructed to either approach and turn around for the withdraw behaviour
(Case I) or to pass the robot on its left side for the avoid behaviour (Case II).
Five runs of each case were analysed. In all of them, the robot behaviour was
according to our model, evidencing that both tracking and reasoning are appli-
cable in a real-world setting. However, the actual sequence of QTC states varied
in a similar fashion as it did in the simulation runs. One prototypical sequence of
the Case II interaction taken from our study is illustrated in Fig. [ with photos
of the subject augmented by the corresponding QTC states as they have been
recognised by the robot. Supplementary material is available on our website:
http://robots.lincoln.ac.uk/research/icsri13

6 Conclusions

In this paper, we proposed a novel approach for the qualitative design of HRSIs,
which is based on a hybrid QTC representation of human and robot trajectories.
Our solution allows for compact and flexible descriptions of spatial interactions,
which are enabled, within the same qualitative framework, by implicit robot con-
trol policies. Several experiments with real data validated the proposed solution,
but highlighted also some limitation of the current implementation. Although
fuzzy sets are useful to represent ambiguities of (top-down) HRSI models, they
seem unsuitable, at least in our case, to deal with real-world uncertainties. In-
deed, F-Limette strongly relies on correct tracking estimates and reliable robot
motion planners. Also, the hierarchical structure of SGTs does not allow for
a hybrid representation of QTC transitions always consistent with the CNDs.
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Therefore, they cannot fully exploit the properties of the calculus, in particular
for the recovery of missing transitions caused by sensor noise or occlusions. Other
solutions based on robust probabilistic frameworks, e.g. POMDP [16], should be
able to overcome some limitations in future implementations of our work.

Finally, at the present, it is not possible to create very complex models of
HRSI: each QTC sequence has to be hand-crafted or learned by datasets for the
specific application. This poses severe constraints in real-world scenarios with
large numbers of potential HRSIs. Further research should investigate incremen-
tal approaches, where initial QTC models are provided as skeletons to be refined
and extended autonomously by the robot, based on actual experience.
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