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Abstract— Social activity based on body motion is a key
feature for non-verbal and physical behavior defined as func-
tion for communicative signal and social interaction between
individuals. Social activity recognition is important to study
human-human communication and also human-robot inter-
action. Based on that, this research has threefold goals: (1)
recognition of social behavior (e.g. human-human interaction)
using a probabilistic approach that merges spatio-temporal
features from individual bodies and social features from the
relationship between two individuals; (2) learn priors based on
physical proximity between individuals during an interaction
using proxemics theory to feed a probabilistic ensemble of
activity classifiers; and (3) provide a public dataset with
RGB-D data of social daily activities including risk situations
useful to test approaches for assisted living, since this type of
dataset is still missing. Results show that using the proposed
approach designed to merge features with different semantics
and proximity priors improves the classification performance
in terms of precision, recall and accuracy when compared with
other approaches that employ alternative strategies.

I. INTRODUCTION

In recent years, there has been a growing interest in recog-
nizing social behavior. The main focus from the psychology
side is on understanding how people’s thoughts, feelings, and
behaviors are influenced by the actual, imagined, or implied
presence of others and also the way humans are influenced
by ethics, attitudes, culture, etc. From the robotics side,
roboticists try to use this knowledge to model and design
robots with capabilities not only to recognize human behav-
ior, but also to interact with humans in different contexts
to serve as assistants. Active & Assisted Living (AAL) is
becoming a central focus for robotics research since there is
a drastic increase of aging population. Robots could be used
to improve the quality of life for those people by assisting
them in their daily life or detecting anomalous situations.
In this context, human activity recognition plays a central
role in identifying potential problems to apply corrective
strategies as soon as possible. In particular, a robot that is
able to analyze the daily social interaction between humans,
can also detect dangerous situations such as identification of
social problems, aggression, etc. Due to the aforementioned
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reasons, big effort has been made for creation of datasets
with RGB-D data [1], [2], [3] and development of approaches
for recognition of Activities of Daily Living (ADL) [4],
[5]. In [6], a simple way to apply a qualitative trajectory
calculus to model 3D movements of the tracked human body
using hidden Markov models (HMMs) is presented. Faria et
al. [7], [8] have proposed a probabilistic ensemble of clas-
sifiers called Dynamic Bayesian Mixture Model (DBMM)
to combine different posterior probabilities from a set of
classifiers with interesting performance on datasets. A bio-
logically inspired approach adopting artificial neural network
to combine pose and motion features for action perception
is proposed in [9]. The approach presented in [10] uses
HMMs combined with Gaussian Mixture Models (GMM)
to model the multimodality of continuous joint positions
over time for activity recognition. All the aforementioned
works have in common the fact that they attempt to recognize
daily activities from one individual performing an activity or
interacting with some object during the activity. Nowadays,
publicly available RGB-D datasets for ADL present only one
subject performing the activities. In this work, we are going
further, focusing on social interaction between two subjects,
since this topic is still challenging in robotics and when it
comes to RGB-D data, it is still little explored.

Approaches based on other types of sensors (one or a
network of monocular cameras or IMUs) can be found in
the literature for social interaction analysis. However when
IMUs are used in social interaction, most of datasets analyze
only one individual using wearable technology. In [11], the
authors show a model based on the orientation of the lower
part of the body to recognize conversational groups. In [12],
the authors resort to Laban Movement Analysis (LMA) to
recognize the social role of a human in a social interaction.
In [13], proxemics theory is adopted to define qualitative
features for social behavior. In this work, we also take
support from proxemics theory, which was introduced by
Edward T. Hall [14] to associate proximity features with
social space surrounding a person as a key-feature to study
the effect of distance on communication and how the effect
varies between cultures and other environmental factors. The
space is divided into intimate, personal, social and public
spaces. In robotics, this is a topic that was carried out by
[15], [16], [17], yet in a simpler way, using only the concept
of defined distances based on thresholds observed from
social science. Differently from others, our approach extracts
proximity-based features learned from social interaction as
prior for the recognition module.

There are three main contributions in this paper: (i) A
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probabilistic approach that merges spatio-temporal features
from individual bodies and social features from the relation-
ship between two individuals for social activity recognition;
(ii) Learned priors using physical proximity between indi-
viduals during an interaction based on proxemics theory to
feed the probabilistic classification model; (iii) Public social
activity dataset with RGB-D data that will be useful to test
approaches for assisted living scenarios.

The remainder of this paper is organized as follows. Sec-
tion II introduces the models that we are based on. Section III
and IV introduces our approach, detailing how we extended
previous works to be adapted for social activity recognition.
Section V presents the performance of our approach, and
finally, Section VI presents the conclusion and future work.

II. PRELIMINARIES: CLASSIFICATION BACKGROUND

This section brings a brief review of the Dynamic Bayesian
Mixture Model (DBMM), which was first proposed by Faria
et al [7] for individual activity recognition, also employed
in other classification contexts [8], [18], [19], [20], [21].
This background section aims to facilitate the understanding
of the next section that will introduce our re-design of the
classification model as an extension in order to allow the
fusion of multiple set of features with different semantics
as multiple mixture and incorporating the learned prior from
proximity features.

A. Dynamic Bayesian Mixture Model

The DBMM [7] is a probabilistic ensemble of classifiers
that was designed based on a dynamic Bayesian network
(DBN) with the concept of mixture model to fuse dif-
ferent classifier outputs, also adding temporal information
through time slices. The DBMM as a DBN representation
with different time slices can be obtained by employing
the Markov property for a finite set of priors and mixture
models. The random variable A (e.g. feature model for a
specific classifier) is considered to be independent on pre-
vious A-nodes: P(At |At−1,Ct ,Ct−1) = P(At |Ct ,Ct−1), where
C represent a set of possible classes (e.g. activities). The
nodes are not conditionally dependent of future nodes e.g.,
P(At−2|Ct ,Ct−1,Ct−2) = P(At−2|Ct−2). As a consequence,
the transition probabilities between classes reduces to the
probability of the current-time class P(Ct) = P(Ct |Ct−1).
Knowing that P(At |Ct) is a mixture of probabilities, then
the explicit expression for the DBMM with T time slices
assumes the following form as shown in [20]:

P(Ct |Ct−1:t−T ,At:t−T ) =
∏

t−T
k=t (∑

n
i=1 wk

i×Pi(Ak|Ck))×P(Ck)

∑
nc
j=1[∏

t−T
k=t (∑

n
i=1 wk

i×Pi, j(Ak|Ck))×Pj(Ck)]
,

(1)
where n is number of classifiers; nc is the number of classes;
w is the weight for each base classifier learned from the
training set. In this work, (1) can be simplified for a single
time slice T = 1 as follows:

P(Ct |At) =
P(Ct )×∑

n
i=1 wt

i×Pi(At |Ct )

∑
nc
j=1 Pj(Ct |Ct−1)×(∑

n
i=1 wt

i×Pi, j(At |Ct ))
, (2)

where P(Ct |At) is the posterior probability; the prior as-
sumes the form ∀t > 1,P(Ct) = P(Ct |Ct−1), otherwise,
t = 1, P(Ct) = 1/nc (uniform); Pi(At |Ct) is the likelihood
model in the DBMM as the posterior probability of a
base classifier; and the mixture model is obtained by
mix = wt

i×Pi(At |Ct). Each weight wi, i = {1,2, ...,n} is
learned using entropy-based confidence for each base classi-
fier based on their performance in the training set as shown
in [7].

B. Base Classifiers for DBMM Fusion

In this work, we have used the Naive Bayes Classifier
(NBC), Support Vector Machines (SVM) and an Artificial
Neural Network (ANN) as base classifiers for the DBMM.
For the linear-kernel multiclass SVM implementation, we
adopted the LibSVM package [22], trained according to
the ‘one-against-one’ strategy, with soft margin (or Cost)
parameter set to 1.0, and classification outputs were given
in terms of probability estimates. The ANN adopted is
a multilayer feedforward network, where the hidden layer
transfer function is a hyperbolic tangent sigmoid and a
normalized exponential (softmax) for the output as posterior
probability estimates.

III. SOCIAL ACTIVITY RECOGNITION

In this section we describe a proposed strategy to combine
multiple set of features as individual entities - one for each
mixture in the model - to be merged into the DBMM.
Figure 1 depicts a flowchart of the proposed modified
structure in the DBMM. Basically, for each set of features
with different semantics (i.e. one representing an individual
with active or non-active role during the social interaction,
another representing social features), we employ multiple
base classifiers conditioned to this specific set of features
representing a mixture that will feed the final fusion. Each
mixture adopts entropy-based weighting as shown in [7] and
afterwards the resulting posterior will have a new weight
assigned to it based on the normalization of the outputs from
each mixture. Once the most probable class for each mixture
model is known based on the higher posterior probability,
then in order to quantify the uncertainty of each mixture, a
simple normalization is employed using these posteriors to
obtain the weights wt

mixy
for the final fusion as follows:

wt
mixy =

Py(Ct |At)

∑
N
y=1 Py(Ct |At)

, (3)

where Py(Ct |At) is the posterior probability of the yth mixture
model (herein, with a total of 3 mixtures, one for each set
of features: individual 1, individual 2 and social features); t
is an index for each time instant.

Given a set of mixture models and their computed weights
(3), we reformulate the DBMM presented in (2) as the
new classification strategy for social activity recognition
assigning weights and prioritizing the features set with higher
confidence as follows:
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Fig. 1: Proposed multiple mixtures to feed the DBMM fusion based on different set of features for social activity recognition.

P(Ct |At ,X t) = β × P(Ct |Ct−1)︸ ︷︷ ︸
dynamic transitions

× P(Ct |X t)︸ ︷︷ ︸
proxemity prior

×

×
m

∑
y=1

[
wt

mixy ×

(
n

∑
i=1

wt
i,y×Pi,y(A|Ct)

)]
︸ ︷︷ ︸

fusion of multiple mixtures

,

(4)
where wt

mixy
is the weight for fusion of each yth mixture

model; wt
i,y is the weight for each ith base classifier in

a mixture model y; P(Ct |X t) is the learned priors from
the dataset based on proxemics, with X representing the
proximity between skeletons; and the normalization factor
β = 1

∑
n
j=1

(
P(Ct

j |C
t−1
j )×P(Ct

j |X
t
j)×∑

m
y=1

[
wt

mixy×
(

∑
n
i=1 wt

i,y×Pi,y(A j |Ct
j)
)]) .

IV. FEATURES EXTRACTION AND PROXIMITY PRIORS
FOR SOCIAL ACTIVITY RECOGNITION

This section describes the steps to obtain a set of features
extracted from skeleton data, e.g. both subjects individually,
and also a set of features from the relationship between both
skeletons interacting. Before features extraction, a moving
average filter with five neighbors was applied on the raw
skeleton data to smooth some noise.

A. Spatio-Temporal Features from Individual Skeleton Data

In order to characterize the labeled social activity dataset
using body posture and movements, we have exploited
skeleton spatio-temporal features from both individuals per-
forming a social interaction individually. To do so, we follow
the features extraction step for single daily activity developed
in [7], [8], since these features have been successful used in
human daily activity recognition. Thus, 51 spatio-temporal
features were used, such as: Euclidean distances between
joints; angles formed between joints (e.g. shoulders, elbows
and hands, and hips knees and feet from left and right side);

torso inclination; joints velocities; energy of upper body
joints velocities; log-energy entropy over the skeleton joints;
auto-correlation between skeleton poses; some statistics such
as mean and standard deviation over joints distances. More
details can be found in [8]. However, we aim to gain in
performance, herein we are also using a new set of features
based on log-covariance of the joints distances of a body
pose. We first built a matrix D with distances computed be-
tween all joints of a skeleton S with indexes i, j = {1, ...,15}.
Since we have fifteen joints represented by 3D coordinates
{x,y,z}, we computed the 3D Euclidean distance among
all joints, resulting a 15× 15 matrix. We removed the null
diagonal, due to the distances between the same joints are
zero, obtaining a 15× 14 matrix. Subsequently, we applied
the log-covariance and we kept the upper triangular elements
as features as follows:

Mlc = U(log(cov(M))), (5)

where the covariance for each element in M is given by
covi j = cov(M) = 1

N ∑
N
k=1(M

ik − µi)(Mk j − µ j); log(·) is
the matrix logarithm function (logm) and U(·) returns the
upper triangular matrix elements composed of 120 features.
The rationale behind the log-covariance is the mapping
of the convex cone of a covariance matrix to the vector
space by using the matrix logarithm. A covariance matrix
forms a convex cone, so that it does not lie in Euclidean
space, e.g., the covariance matrix space is not closed under
multiplication with negative scalars. A total of 171 features
per frame for each individual skeleton was obtained.

B. Social Features: Skeletons Proximity over Time
We define here social features as the ones that describe

the relationship between two skeletons based on physical
proximity, i.e. inter-bodies distance during the interaction.
This set of features encompasses different subsets of features
as follows:
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• As first subset of features, the 3D Euclidean distance
among all joints of an individual skeleton to the other in-
dividual skeleton corresponding joints were computed:

δ (S11,...,15,S21,...,15) =

=
√
(S1x

i −S2x
i )

2 +(S1y
i −S2y

i )
2 +(S1z

i −S2z
i )

2.
(6)

With the resulting 15×15 matrix, we have computed the
log-covariance and kept the upper triangular elements as
shown in (5), obtaining 120 features from this step.

• The second subset of features consists of two
features that were computed by considering the
minimum 3D Euclidean distance among all joints
from individual one to the torso of individual
two, and vice-versa: d1min = min(δ (S1i,S2torso)) and
d2min = min(δ (S2i,S1torso)).

• The third subset of features consists of three features
that helps to figure out the most active person (i.e.,
the one is approaching the other individual space). The
first one is the computed distance from torso to torso
δ (S1torso,S2torso). The other two features were obtained
from the energy over the 3D euclidean distances from
all joints of skeleton one to the torso of skeleton two
and vice-versa as follows:

ed1{S1,S2} = ∑v2
1 and ed2{S2,S1} = ∑v2

2,

with v = δ (Si{1,...,15},Sitorso), i = {1,2}.
(7)

• The fourth subset has 120 features that were computed
similarly to the first subset, however, in a temporal
way. The same steps are computed for time instant
t and t − 1 regarding the Euclidean distances among
the joints of skeleton one to the corresponding
joints of skeleton two, δ (S1{1,...,15},S2{1,...,15})

t and
δ (S1{1,...,15},S2{1,...,15})

t−n, where n is a temporal
window, herein defined as 10 frames. Following
this step, we computed the difference between them,
r = δ (S1{1,...,15}S2{1,...,15})

t −δ (S1{1,...,15}S2{1,...,15})
t−n

as input for the log-covariance, getting the upper
triangular elements from that.

From all subsets, we have acquired 245 social features per
frame given both skeletons interacting.

C. Features Normalization

Normalization, standardization or filtering may be a re-
quirement for many machine learning estimators, as they can
behave badly if these steps are not applied to the features set.
Working on features space, a normalization step was applied
in such a way that the values of minimum and maximum
obtained during the training stage for each type of feature
were used to normalize the training and test set as follows:

Fsetk
tr =

Fsetk
tr −min(Fsetk

tr )

max(Fsetk
tr )−min(Fsetk

tr )
, (8)

Fk
te =

Fsetk
te −min(Fsetk

tr )

max(Fsetk
tr )−min(Fsetk

tr )
, (9)

where Ftr and Fte are the training and test sets respectively;
setk represents a feature type (i.e., column in the training and
test set matrices).

D. Learning Priors based on Proximity Features

In this work we use the proxemics theory assuming
that certain types of social interactions happens in
specific social space based on distances. Although these
social spaces are not unique for every person and are
not easy to define, we try to learn this information
by extracting distance features between two individuals
during the interaction. To do so, given the skeletons
data with 3D coordinates of body joints, we compute
3D Euclidean distances between the two skeletons for
each social interaction. The features set encloses seven
distances: torso to torso distance, δ (S1torso,S2torso); the
minimum joint distance of individual one to the torso of
the individual two, d1min = min(δ (S1{1,...,15},S2torso))
and vice-versa, d2min = min(δ (S2{1,...,15},S1torso));
similarly as the latter, however, with maximum
distance, d1max = max(δ (S1{1,...,15},S2torso)) and
d2max = max(δ (S2{1,...,15},S1torso)); and the minimum
and maximum joint to joint distances between both
individuals, d12min = min(δ (S1{1,...,15},S2{1,...,15})) and
d12max = max(δ (S1{1,...,15},S2{1,...,15})).

In order to learn the priors given the set of features for each
activity using the training set, we resorted to a multivariate
Gaussian distribution. The estimation of the parameters is
based on mean and covariance matrix. Once we computed
the distribution for each activity, then, during the test set, we
have extracted these proximity features followed by a fitting
step to the learned distribution. This fitting probability is
used as likelihood to a recursive Bayesian model to predict
from the test set the most probable activity. This posterior
probability will be the prior to the DBMM classification. The
rationale is that, given the test set, based on the observed
distance between the individuals during the interaction, we
have an estimation/guess about the activity based on the
social space between them, as a prior knowledge to our
proposed approach.

The Bayesian update of the priors is an estimation
performed at every 30 frames (1 second), in order to
get more variance during the interaction. It is given by
P(at |xt) = P(xt |at )P(at )

∑ j P(xt
j |a

t
j)P(a

t
j)

, where P(at |xt) is the posterior of
each frame for an activity a, given the proximity features set
x. The initial prior of each class is defined as uniform, 1/nc,
where nc is the number of classes, and afterwards the last
posterior of the Bayesian update is used as prior to the next
frame classification, P(at) = P(at |at−1). The fitting process
given the proxemics features from the test set is obtained
for each activity, which is used as likelihood to the Bayesian
update:

P(xt |at) = φ(xi|µ j,Σ j)
k
j ,

, 1
(2π)d/2|Σ| exp

(
− 1

2 (xi−µ)T Σ−1(xi−µ)
)
.

(10)
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handshake hug help walk help stand-up depth and skeletons

fight push conversation draw attention depth and skeletons

Fig. 2: Samples of the 3D Social Activity Dataset.

Fig. 3: Proximity priors performance: Average and standard deviation for each social activity over different tests.

V. EXPERIMENTAL RESULTS

A. Social Activity Dataset

A new dataset of social interaction (ISR-UoL 3D Social
Activity Dataset) between two subjects was built and it is
publicly available for the community1. This dataset consists
of RGB and depth images, and tracked skeleton data (i.e.
joints 3D coordinates and rotations) acquired by an RGB-
D sensor. It includes 8 social activities: handshake, greeting
hug, help walk, help stand-up, fight, push, conversation, call
attention. Each activity was recorded in a period around 40

1Dataset available at: https://lcas.lincoln.ac.uk/wp/
isr-uol-3d-social-activity-dataset

to 60 seconds of repetitions within the same session at a
frame rate of 30 frames per second. The only exceptions are
help walking (at a short distance) and help stand-up, which
were recorded 4 times as the same session, regardless of
the time spent on it. The activities were selected to address
the assisted living scenario (e.g. happening in a health care
environment: help walking, help stand-up and call attention),
with potential harm situations, such as aggression (e.g. fight-
ing, pushing), and casual activities of social interactions (e.g.
handshake, greeting hug and conversation). The activities
were performed by 6 persons, 4 males and 2 females with
an average age of 29.7± 4.2, from different nationalities
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(a) Prec: 64.45%; Rec: 62.42%; Acc: 62.42%
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(b) Prec: 62.10%; Rec: 60.74%; Acc: 60.74% (c) Prec: 75.18%; Rec: 73.44%; Acc: 73.44%.

Fig. 4: Confusion matrices (leave-one-out cross validation) for (a) learning individual features from person 1 and 2 and test
on person 1; (b) learning individual features from person 1 and 2 and test on person 2; (c) learning and test using only
social features.

(a) Overall prec: 83.22%; rec: 82.98%; and acc: 82.98% (b) Overall prec: 85.60%; recall: 85.12%; acc: 85.12%

Fig. 5: Left image: results for test case (d), combining all features as one mixture (DBMM) and without proximity priors.
Right image: results for test case (e), proposed approach using all features distributed in 3 mixtures and learned proximity
priors.

(Italian, Brazilian and Portuguese), which can influence the
proxemics parameters. A total of 10 different combinations
of individuals (or sessions) were performed, with variation
of the roles (active or passive person) between the subjects.
Each subject has participated at least with 3 combinations,
acting each role at least once. Half of the recorded sessions
have been performed by a pair of persons who never met
before the interaction, This was done in order to increase the
generalization of the study regarding individual behavior.

B. Classification Results

In order to emphasize the advantage of using priors based
on promexics theory (i.e. using proximity features), Fig. 3
shows the performance of the priors on a test set for each
activity. Priors based on proximity features alone are not
enough for frame to frame classification, however, when
combined with the classification approach, it helps to obtain
a faster convergence, since the initial guess tend to reduce

the chances of less probable classes.

Regarding the classification, the protocol for the tests was
leave-one-out cross validation strategy given 10 sessions and
8 activities for: (a) learning with individual features from
subject one and two - excluding the social features - and
test on subject one (i.e. individual with passive role during
interactions); (b) the same as the latter, but testing on subject
2 (i.e. individual with active role during interactions, e.g.
aggressor, call attention); (c) learning and test with social
features only; (d) learning and test using all features as
only one mixture in the classification model; and (e) full
approach as depicted in Fig. 1: learning and test with all
features as different mixtures and using the proximity (i.e.
proxemics-based) priors. Fig. 4, presents the test cases (a)-
(c). Looking at these test cases, we can notice that our
approach has interesting performance in recognizing social
activities even observing only one role, i.e., one subject
performing the social interaction (as active or passive role).
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The results obtained are attractive, since this dataset is very
challenging, with many variations in subject’s role, different
persons with different behavior/response, showing that our
approach has big potential for generalization in social activity
recognition. The results obtained from tests (a) and (b) are
consistent, since they are very similar for both individuals.
The results obtained from test (c) were computed using one
single mixture in the model. The proposed social features can
distinguish the classes of activities, however improvements
can be obtained as shown next. Fig. 5 (left image) presents
the result attained for the test case (d). We can observe that
encompassing all features as one entity (i.e. one mixture),
the classification performance is improved when compared
with the previous tests (a)-(c), where the features sets are
tested individually. Finally, the test case (e) is presented in
Fig. 5, showing that the proposed approach outperforms the
previous test cases in terms of overall precision, recall and
accuracy, reaching the performance above 85%. We can state
that using the proximity priors and three different mixtures
- one for each feature model - we obtained an improvement
on the overall result around 3% in terms of precision, recall
and accuracy when compared with test case (d), which is a
significant improvement for this dataset due to the amount
of frames for classification.

VI. CONCLUSION AND FUTURE WORK

Recognition of social behavior and interaction is an im-
portant and challenging topic in ambient assisted living and
robotics. This paper presented a new challenging RGB-
D dataset for social activity recognition that is publicly
available [23], introducing a new set of social features based
on two subjects interacting. An adaptation on the dynamic
Bayesian mixture model, first proposed in [7], was presented
to deal with social activity recognition, showing that this
proposed design, when combined with priors learnt from
proximity features, improves the classification performance,
reducing the likelihood of the less probable activities. Results
show that the proposed approach can recognize different
social activities and has the potential to be exploited in
robotics for assisted living. Future work will address the
design of other social features (e.g. bodies orientation),
and the integration of this approach for monitoring tasks
performed by mobile robots in contexts of assisted living.
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